Recent attention is focused on the impact of diet on health and mental well-being. High-salt and cholesterol diet (HSCD) is known to be associated with neuroinflammation which is the predominant factor for neurodegenerative disease like Alzheimer disease (AD). In the present study, we examined the neuroprotective potential of rosuvastatin, an HMG-CoA reductase inhibitor against HSCD induced neuroinflammation and cognitive impairment. Our results demonstrated that HSCD-induced cognitive impairment as determined by Morris water maze (MWM) task. HSCD also activated nuclear factor kappaB (NF-kB) signaling pathway. The cytokine response was measured using a cytometric bead-based assay quantified by flow cytometry. Treatment with rosuvastatin decreased the production of nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and increased interleukin-10 (IL-10) in a dose-dependent manner. Our results also demonstrated that the rosuvastatin modulates neuronal cell death by inhibiting the overexpression of NF-kB in the CA1 region of hippocampus. In addition, molecular docking study of rosuvastatin indicated high affinity and tighter binding capacity for the active site of the NF-kB. These results suggest that HSCD-triggered inflammatory response and cognitive impairment may be associated with NF-κB signaling pathway. Therefore, treatment with rosuvastatin could be a potential new therapeutic strategy for sporadic dementia of AD.
Large populations are the sufferers of the neurological disorders, pointing the need for investigation of such therapeutic interventions which target and delay the underlying pathological hallmarks and exert positive influence on different neurological health problems. Hypolipidemic, hypoglycemic, antioxidant, and immunomodulatory effects of fenugreek and its constituents with their potential role in various neurological disorders were already reported. In future, it would be of even greater interest to further develop more effective dosage, supplementation period, and to evaluate the therapeutic potentials of fenugreek and its constituents in neurological disorders by exploring underlying cellular and molecular mechanisms.
Neurodegenerative disorders and osteoporosis share some common underlying pathological features including calcium overload, accumulation of toxic chemicals, inflammation and impaired protein prenylation by isoprenoids (farnesyl pyrophosphate and geranylgeranyl pyrophosphate) appear later stage of life. Substantial number of pre-clinical and clinical reports as well as in vitro data univocally acknowledged the negative impact of altered post-translational modification (prenylation) of proteins like small GTPases (Rffhes, Rho, Rac etc.) and cholesterol levels in both serum and brain on CNS integrity. Bisphosphonates (BPs), referred to as gold standard for osteoporosis treatment, have well established role in attenuation of bone resorption and osteoclast apoptosis by inhibition of farnesyl pyrophosphate synthase enzyme (FPPS) in mevalonate pathway. BPs mainly nitrogen containing BPs (NBPs) have potential to offer new therapeutic targets for neurological disorders and received increasing attention in recent years. A year back clinical and pre-clinical studies revealed that NBPs have the potential to alleviate the symptoms of neurological disorders like brain calcification, Alzheimer's disease and Huntington's disease by targeting mevalonate pathway. Though these drugs have well developed role in inhibition of isoprenoids synthesis, these were demonstrated to inhibit acetyl cholinesterase enzyme and cholesterol synthesis in brain that are considered as the critical factors for impairment of cognitive functions which is the hallmark of several neurological disorders. Still the current understanding of BPs' effect in CNS is limited due to lack of studies focusing the molecular and cellular mechanism. The present review aims to reveal the updated discussion on the mechanism contributing BPs' effect in CNS disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.