A new class of blue light-emitting supramolecular liquid crystalline cone or bowl-shaped compounds were synthesized from substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles with calix[4]arene derivatives.
AbstractThe discovery of a drug is known to be quite cumbersome, both in terms of the microscopic fundamental research behind it and the industrial scale manufacturing process. A major concern in drug discovery is the acceleration of the process and cost reduction. The fact that clinical trials cannot be accelerated, therefore, emphasizes the need to accelerate the strategies for identifying lead compounds at an early stage. We, herein, focus on the definition of what would be regarded as a “drug-like” molecule and a “lead-like” one. In particular, “drug-likeness” is referred to as resemblance to existing drugs, whereas “lead-likeness” is characterized by the similarity with structural and physicochemical properties of a “lead”compound, i.e. a reference compound or a starting point for further drug development. It is now well known that a huge proportion of the drug discovery is inspired or derived from natural products (NPs), which have larger complexity as well as size when compared with synthetic compounds. Therefore, similar definitions of “drug-likeness” and “lead-likeness” cannot be applied for the NP-likeness. Rather, there is the dire need to define and explain NP-likeness in regard to chemical structure. An attempt has been made here to give an overview of the general concepts associated with NP discovery, and to provide the foundational basis for defining a molecule as a “drug”, a “lead” or a “natural compound.”
Novel coronavirus SARS-CoV-2 has infected 18 million people with 700,000þ mortalities worldwide and this deadly numeric figure is rapidly rising. With very few success stories, the therapeutic targeting of this epidemic has been mainly attributed to main protease (Mpro), whilst Papain-like proteases (PLpro) also plays a vital role in the processing of replicase polyprotein. Multifunctional roles of PLpro such as viral polypeptide cleavage, de-ISGlyation and immune suppression have made it a promising drug target for therapeutic interventions. Whilst there have been a number of studies and others are ongoing on repurposing and new-small molecule screening, albeit previously FDA approved drugs viz. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have only been found effective against this pandemic. Inspired by this fact, we have carried out molecular docking and dynamics simulation studies of FDA approved CQ and HCQ against SARS-CoV-2 PLpro. The end aim is to characterise the binding mode of CQ and HCQ and identify the key amino acid residues involved in the mechanism of action. Further, molecular dynamics simulations (MDS) were carried out with the docked complex to search for the conformational space and for understanding the integrity of binding mode. We showed that the CQ and HCQ can bind with better binding affinity with PLpro as compared to reference known PLpro inhibitor. Based on the presented findings, it can be anticipated that the SARS-CoV-2 PLpro may act as molecular target of CQ and HCQ, and can be projected for further exploration to design potent inhibitors of SARS-CoV-2 PLpro in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.