Series of amorphous silicon carbon nitride (a-SiCN) films are synthesized using RF-PECVD technique on glass and silicon substrates from precursor gas of silane, methane and nitrogen. In this work, the change in nitrogen flow rate from 0 sccm to 50 sccm is a mean used to vary the elemental composition and bonding properties which lead to change in optical properties. The films thickness varies between 327 nm to 944 nm. The changes for the stated properties are discussed against the change in the stated nitrogen flow rate. The optical properties are investigated by means of UV-VIS spectroscopy in the wavelength range of 190 nm to 2500 nm. The transmittance of the films at ultraviolet wavelength is found to increases with increase in nitrogen flow rate. The index of refraction, n obtained for SiCN films from transmittance and reflectance measurements is lower compared to SiC films. The films optical band gap increases from 1.74 eV to 2.08 eV before it decreases to 1.89 eV as nitrogen flow rate increases from 0 to 50 sccm. The optical dispersion parameters were determined according to Wemple and Didomenico method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.