The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202109547.
Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold. Current restrictions for their use are the large fluid-channel sizes (>5 µm), limiting the fluid-fluid interaction surface-area, and the inability to flow liquids through the channels. In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m 2 cm −3 is introduced. Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels via electroosmosis. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid-liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes.
Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with Zinc demonstrate better clinical outcome. The molecular target and mechanistic details of anti-coronaviral activity of Zinc...
Bicontinuous particle-stabilized emulsions (bijels) are networks of interpenetrating oil/water channels with applications in catalysis, tissue engineering, and energy storage. Bijels can be generated by arresting solvent transfer induced phase separation (STrIPS) via interfacial jamming of nanoparticles. However, until now, STrIPS bijels have only been formed with silica nanoparticles of low surface charge densities, limiting their potential applications in catalysis and fluid transport. Here, we show how strongly charged silica nanoparticles can stabilize bijels. To this end, we carry out a systematic study employing dynamic light scattering, zeta potential, acid/base titrations, turbidimetry, surface tension, and confocal microscopy. We find that moderating the adsorption of oppositely charged surfactants on the particles is crucial to facilitate particle dispersibility in the bijel casting mixture and bijel stabilization. Our results potentially introduce a general understanding for bijel fabrication with different inorganic nanoparticle materials of variable charge density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.