This paper presents an optimization approach in determining the expansion-limit of Renewable Distributed Generation (DG) capacity through a Net Energy Metering (NEM) scheme specifically for selected Malaysian public hospitals. In this study, the total line loss reduction was analyzed and set as the main objective function in the optimization process where an acceptance region for DG extensiveness was proposed via the lower total line loss outcome value. Solar photovoltaic (PV)-type DG unit (PV-DG) was identified as the type of DG used in this paper. Artificial Bee Colony (ABC) algorithm was chosen to alleviate such PV-DG optimization. The distribution network uses a bus and line data setup from the three selected Malaysian public hospitals prior to three different levels, i.e., National, State, and District level hospitals. MATLAB simulation result showed the PV-DG expansion capacity towards bigger scale and location bounded by the U-trajectory shape theory which resulted in a contradiction between NEM current maximum capacity requirement and actual PV-DG expansion-limit. These limitations were also found to be different among three different level hospitals, and the expansion-limit was tailored by their own distribution network parameters. Thus, this paper provides technical justification and gives the best option to the renewable energy (RE) developer for more effective PV-DG integration through the utilization of a NEM scheme. The importance of the study is portrayed in-depth towards achieving a more sensible and accurate way of estimating the outcome. This will encourage developers, building owners, and users in participating towards achieving potential benefits both in monetary and power system reliability improvement, specifically for Malaysian public hospital applications.
This paper presents an optimization solution for renewable Distributed Generation (DG), as imposed in the Green Building Rati ng System (GBRS) for a public hospital. Solar photovoltaic DG unit (PV-DG) is identified as a type of DG used in this paper. The proposed optimization via PV-DG coordination will improve the sustainable energy performance of the green building by power loss reduction within accepted lower losses region using Artificial Bee Colony (ABC) algorithm. The setup input data from one of Malaysian public hospitals' power distribution system is been adopted and simulation results via MATLAB programming show that the optimization of DG forming into bigger-scale imposed system provides a better outcome in minimization of total power losses within appropriate voltage profile as compared to current PV-DG imposed in GBRS. The objective function representing total power losses which also supported by related literature give a measure that forming sufficient and optimal PV-DG assessment criteria is highly important, thus, current PV-DG assessment in GBRS is proposed to be reviewed into new parameter setting for public hospital due to its' high energy demand and distinctive electrical load profile.
Malaysia's Eleventh Plan started to encourage green building developments and green industries to stimulate green growth. Eventually, the Malaysian government had launched a new commitment to accelerate the green and efficient energy sector and revised the quota of Renewable Energy (RE) towards higher capacity for electricity generation. These scenarios had highlighted the latest commitment of the Malaysian government to implement both green building development and concurrently, streamline the additional quota for RE generation. Due to this, the evolution of the requirement of RE-based Distributed Generation (DG) in the green building development for higher installed-capacity was expected to occur in ensuring the government key achievement becomes more visible. This study focuses on measuring the expanded-capacity performance of the Solar Photovoltaic (PV)-type DG unit (PV-DG) through the Green Building Rating System (GBRS), particularly on the useful energy consumption yield for load and total line loss minimization. Previous work has conducted a MATLAB simulation on a PV-DG capacity expansion guided by the Net Energy Metering (NEM) specification considering the total line loss minimization as the main objective function. These results are being adopted to obtain the ratio of useful energy consumption from the generated PV-DG through the selected distribution network. Consequently, the Performance Ratio (PR) -as the internationally recognized formulation for a complete PV-DG system -is proposed to be revolutionized towards extended version, considering the specific total line losses minimization, via the formed of the proposed ratio.INDEX TERMS Green building rating system, net energy metering, distributed generation, payback period, performance ratio.
Thermal oxidation is a process done to grow a layer of oxide on the surface of a silicon wafer at elevated temperatures to form silicon dioxide. Usually, it en- counters instability in oxide growth and results in variation in the oxide thickness formed. This leads to downtime of furnace and wafer scrap. This study focuses on the factors leading to this phenomenon and finding the optimum settings of these factors. The factors that cause instability to oxide thickness were narrowed down to location of wafer in furnace, oxidation time, gas flow rate and temperature. Characterization and optimization were done using Design of Experiments. Full factorial design was implemented using 4 factors and 2 levels, resulting in 16 runs. Data analysis was done using Multiple Regression Analysis in JMP software. Actual versus predicted plot is examined to determine whether the model fit is significant. Adjusted <em>R</em><sup>2</sup> value was obtained at 99.8% or 0.998 indicating that there is very minimal variation of the data not explained by the model and thus confirming that the model is good. From the effect test, the factors were narrowed down from 4 factors to 3 factors. Location factor was found to have no impact. Significant factors that have impact are gas flow rate, oxidation time and temperature. Analyzing the leverage plots and least square mean plots, temperature was found to have the highest impact on oxide thickness. The model was further analyzed using prediction profiler in JMP to find the optimum settings for thermal oxidation process to meet the target oxide thickness of 8000A. Optimum setting for temperature was found to be at 958 C, gas flow rate at low flow rate (H<sub>2</sub>:6.5 slm and O<sub>2</sub>:4.5 slm), oxidation time at 280 min and location of wafers at both zone 1 and zone 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.