This paper demonstrates a simple technique to detect vibration-induced fatigue cracks using a hybrid method by vibration and acoustic emission techniques. A thin aluminum plate of 6082-T6 was excited using a vibration shaker to achieve a bending mode where the maximum stress exhibited at the plate mid-span. To simulate crack formation, a sharp notch was created. This systematic setup allows mode I crack propagation through plate thickness. The development of cracks over time changed the natural frequency of the plate which leads to the reduction of vibration amplitudes. This experimental technique facilitates the identification of acoustic emission waves during the onset of damage in the presence of noise due to dynamic motion. The effect of crack development on Lamb waves was investigated. The acoustic emission signals were cross-correlated with a Gaussian window of a central frequency of 250kHz. The results show a reduction in the fundamental wave A0, whilst an increase in S0 wave amplitudes at some stages during crack extension. The current experimental work can be an alternative technique for vibration-induced fatigue test evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.