Bioconvective flows have attracted attention in recent years due to actual and potential applications. In this paper, we consider a steady and laminar convective MHD flow of a nanofluid with heat, mass and microorganism transfer with a heat source/sink present. In addition, we assume there exists a first order chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) using the scaling group transformation and the associated boundary value problem is then solved. The influences of selected governing parameters on the dimensionless velocity, temperature, nanoparticle concentration, density of motile microorganisms, skin friction, heat transfer, mass transfer, and motile microorganism density rates are computed and discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.