The pressure to provide social housing in a fast and economic way, as well as outdated regulations, constrain the design of these buildings, having serious implications for the comfort of occupants and the environment. This becomes more critical in hot-humid climates, such as Malaysia, with uniformly high temperature and humidity and low wind speeds. In its capital, Kuala Lumpur, an extensive program of construction for high-rise social housing is being carried out, however, shortly after the flats are occupied, or as soon as they can afford it, the residents fit wall mounted air conditioning units. This research started by looking at Malay vernacular architecture and the traditional strategies for ventilation and cooling. After a review of current building regulations and green tools employed in the country, two campaigns of fieldwork were carried out to assess the actual indoor and outdoor thermal and air quality conditions in the buildings, which were found to be inadequate for both the local regulations and international recommendations. The fieldwork also allowed the identification of the critical design issues to address. A ventilation and filtering ceiling system has been identified as one of the possible solutions for the current situation and has been tested through physical and computer models. The system improves comfort by reducing the air temperature, humidity, and amount of airborne particles and gases, as well as constantly providing an adequate airflow rate. It is the first attempt to develop what we have named the ‘airhouse’ standard for tropical countries.
Air pollution is one factor that contributes to serious health issues in developing countries. The Malaysian Environmental Department has measured that particulate matter in urban areas is significantly higher than other parts of the country. Thus, this study aims to assess the current level of indoor and outdoor air quality in a tropical city—Kuala Lumpur; and to understand the relationship between these two environments in high-rise buildings. Through a fieldwork study on two typologies of social housing in the city, particulate matters of PM10 and PM2.5 were found to be the most common substances in indoor and outdoor spaces. The first typology, which employs a compact design with light-wells, recorded a decrease in particulate matter concentrations, whereas the second, which employs atriums in its design, recorded an increase for the same substance. Therefore, a change in the ventilation concept should be implemented to address the problem of indoor air pollution using an integrated hybrid strategy of passive and low energy consumption techniques that should be explored in greater detail in the future.
Indoor air pollution has proven negative impacts on the urban population in many developing countries. In Kuala Lumpur, high-rise housing programmes are not addressing IAQ and thermal comfort. As household incomes rise, residents are resorting to retro-fitting wall mounted split, air conditioning units; a strategy that is neither cost nor carbon effective. This paper reports on the results of computer modelling in conjunction with scale model trials (1:5) of a ‘Dynamic-Hybrid Air Permeable Ceiling’ (DHAPC) designed to filter, cool and dehumidify, the incoming air mass. This filter membrane, when combined with activated charcoal, reduced carbon monoxide, sulphur dioxide, benzene and particulate levels by up to 90%. These techniques now require to be replicated at 1:1 scale; however, the initial data suggest that such an approach, could make a major contribution to improving indoor air quality and thermal comfort with a much reduced carbon penalty. Practical application: Air pollution is now being recognised as having major negative impacts on public health. The use of insulation, as a large area and volume air filter, would appear to be a highly effective technique to reduce particulate matter, and when combined with activated charcoal that absorbs/adsorbs toxic gasses, can significantly improve indoor air quality in cities across the world that are presently exceeding WHO air quality guidelines.
Offshore wind is in a rapid transitional phase, pushed worldwide by efforts of those to reduce climate change. Wind power is becoming a commercialised, unsubsidised competitive form of low carbon generation of renewable energy. Marketplaces reflect this growing trend with the first introduction of subsidy free bids in a tender for the Dutch and German governments. The analysis of surrounding literature of subsidy free bids and governmental policies revealed that integration of subsidy free bids have been carried out to various extents. Bids like those seen in the German and Dutch governments have been done in accompaniment with supportive policies and measures. For the UK, a possible subsidy free bid could be developed under the Scottish Sectoral Marine Plan. Owing to that, this paper investigates the feasibility of a subsidy free bid for the Scottish government. Utilising the Department for Business, Energy and Industrial Strategy (BEIS) levelised cost of electricity (LCOE) metric were inserted into a detailed excel spreadsheet. This paper calculates multiple financial scenarios under the LCOE metric to provide an insight into the possible scenarios of which different models of subsidy free bids can be implemented. The main parameters associated with the BEIS metric and calculator design were investigated. These included financial cost predictions, discount rate, generational capacity and net capacity factors. The final conclusion of the generated output data, showed it was indeed possible to adopt a subsidy free bid under the current UK contract for difference (CfD) scheme under strict and favourable conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.