Carbon-fiber-reinforced plastic materials have attracted several applications, including the fused deposition modelling (FDM) process. As a cheaper and more environmentally friendly alternative to its virgin counterpart, the use of milled recycled carbon fiber (rCF) has received much attention. The quality of the feed filament is important to avoid filament breakage and clogged nozzles during the FDM printing process. However, information about the effect of material parameters on the mechanical and physical properties of short rCF-reinforced FDM filament is still limited. This paper presents the effect of fiber loading (10 wt%, 20 wt%, and 30 wt%) and fiber size (63 µm, 75 µm, and 150 µm) on the filament’s tensile properties, surface roughness, microstructure, porosity level, density, and water absorptivity. The results show that the addition of 63 µm fibers at 10 wt% loading can enhance filament tensile properties with minimal surface roughness and porosity level. The addition of rCF increased the density and reduced the material’s water intake. This study also indicates a clear trade-off between the optimized properties. Hence, it is recommended that the optimization of rCF should consider the final application of the product. The findings of this study provide a new manufacturing strategy in utilizing milled rCF in potential 3D printing-based applications.
Fibre reinforced composites are widely used in various sectors such as aerospace, wind energy and automotive. Due to its versatility and low cost for rapid prototyping and production applications, additive manufacturing technology has grown exponentially over the past few years. In this paper, performances of glass fibre and carbon fibre reinforced composites in additive manufacturing are reviewed from the perspective of mechanical properties. From the review, the reinforcements generally improve mechanical properties, in particular for tensile modulus and tensile strength. The paper presents a benchmark of additive manufacturing technologies for composite material as well as the spotlights of further research in the usage of carbon and glass fibres in rapid prototyping processes.
Sandblasting is a post-processing process that is required to improve the surface due to the layered nature of fused filament fabrication parts. This paper presents preliminary work based on full factorial design of experiment, considering pressure (100 kPa and 700 kPa), time (10 s and 120 s), distance (10 mm and 370 mm) and aluminium oxide abrasive which is 106 µm and 29.5 µm of particles size as the input factors. The effect of the parameters on the surface roughness (Sa) for flat and curve surface, material usage and energy consumption allow were analysed. The result shows that both Sa for flat and Sa curve surface were highly influenced by the abrasive particles size and time with the highest changes of Sa for flat and curve reaches up to 2.825 µm and 6.090 µm respectively. This study provides information on how sandblasting parameters should be selected in improving surface quality and resource usage.
Fused deposition modelling performances are dominated by selection of process parameters. Multi objective optimisation is essential in ensuring excellent product mechanical properties, surface quality and resource efficiency. This paper presents a preliminary work based on Taguchi orthogonal array design of experiment, considering build orientation, printing angle and layer thickness as the input factors. The build orientation has a significant influence on tensile strength while the layer thickness on energy consumption and printing time. Adverse effects on the responses can be observed during the attempts. However, two factors optimisations were still achievable. Optimal settings should be suited based on final application and economical constraints. This study has established a groundwork of further studies in optimisation of quality of the method.
Fused deposition modelling (FDM) process is one of popular 3D printing technologies, especially on printing polymer materials for a rapid prototyping. The process is well known for its resource saving, with no tooling cost required and minimum energy demand. However, the challenge is that the process performances are highly influenced by selection of parameters. From literature, consideration on material usage and process energy demand in FDM processes is still limited. This study used an L9 Taguchi orthogonal array design in investigating effect of build orientation, printing speed and layer thickness on process energy consumption and total material usage in FDM processes. The p-values from ANOVA analysis revealed that only layer thickness and build orientation had significant effect on the outputs. In minimising material usage, the strategy is to select the correct build orientation to avoid need of support structure. For reducing energy demand, optimum layer thickness needs to be determined by considering other factors such as mechanical properties and surface roughness. This study provides preliminary findings which will benefit FDM users in using resources efficiently. Further studies are required to complement the findings from the aspects of mechanical and physical properties of the printed products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.