The phylogenetic relationships of long-tailed macaque (Macaca fascicularis fascicularis) populations distributed in Peninsular Malaysia in relation to other regions remain unknown. The aim of this study was to reveal the phylogeography and population genetics of Peninsular Malaysia's M. f. fascicularis based on the D-loop region of mitochondrial DNA. Sixty-five haplotypes were detected in all populations, with only Vietnam and Cambodia sharing four haplotypes. The minimum-spanning network projected a distant relationship between Peninsular Malaysian and insular populations. Genetic differentiation (F ST, Nst) results suggested that the gene flow among Peninsular Malaysian and the other populations is very low. Phylogenetic tree reconstructions indicated a monophyletic clade of Malaysia's population with continental populations (NJ = 97%, MP = 76%, and Bayesian = 1.00 posterior probabilities). The results demonstrate that Peninsular Malaysia's M. f. fascicularis belonged to Indochinese populations as opposed to the previously claimed Sundaic populations. M. f. fascicularis groups are estimated to have colonized Peninsular Malaysia ~0.47 million years ago (MYA) directly from Indochina through seaways, by means of natural sea rafting, or through terrestrial radiation during continental shelf emersion. Here, the Isthmus of Kra played a central part as biogeographical barriers that then separated it from the remaining continental populations.
Approximately 356 species of turtles inhabit saltwater and freshwater habitats globally, except in Antarctica. Twenty-four species of turtles have been reported in Malaysia, four of which are sea turtles. The state of Terengganu harbored the highest number of turtles, with 17 different reported species. Based on the IUCN Red List, 29% of turtle species in Malaysia are critically endangered. In comparison, another 25% are classified as endangered. Likewise, CITES reported that 67% of Malaysia’s turtles are threatened, while 25% are classified as critically endangered. This review discusses the checklists, molecular genetics work, conservation status, recent trends, and recommendations for future research. Factors contributing to their population declines and current endangered status are also discussed.
Terrapins inhabit brackish water or coastal salt marshes. Terrapins are adapted to intermediate salinities but frequently face saltwater-inundated marsh habitats. To date, 12 species of terrapin have been reported worldwide. The present study aims to determine the global utility of terrapin
Southern River Terrapin, Batagur affinis, is a freshwater turtle listed as critically endangered on the IUCN Red List since 2000. Many studies suggest that faecal DNA metabarcoding can shield light on the host-associated microbial communities that play important roles in host health. Thus, this study aimed to characterise and compare the faecal bacterial community between captive and wild B. affinis using metabarcoding approaches. A total of seven faeces samples were collected from captive (N = 5) and wild (N = 2) adult B. affinis aseptically, crossing the East and West coast of peninsular Malaysia. The DNA was extracted from the faeces samples, and the 16S rRNA gene (V3–V4 region) was amplified using polymerase chain reaction (PCR). The amplicon was further analysed using SILVA and DADA2 pipelines. In total, 297 bacterial communities taxonomic profile (phylum to genus) were determined. Three phyla were found in high abundance in all faeces samples, namely Firmicutes (38.69%), Bacteroidetes (24.52%), and Fusobacteria (6.95%). Proteobacteria were detected in all faeces samples (39.63%), except the wild sample, KBW3. Under genus level, Cetobacteriumwas found as the most abundant genus (67.79%), followed by Bacteroides (24.56%) and Parabacteroides (21.78%). The uncultured genus had the highest abundance (88.51%) even though not detected in the BK31 and KBW2 samples. The potential probiotic genera (75.00%) were discovered to be more dominant in B. affinis faeces samples. Results demonstrated that the captive B. affinis faeces samples have a greater bacterial variety and richness than wild B. affinis faeces samples. This study has established a starting point for future investigation of the gut microbiota of B. affinis.
A population genetics study was carried out on the Southern River terrapin (Batagur affinis) from four places in Peninsular Malaysia: Pasir Gajah, Kemaman (KE), Terengganu; Bukit Pinang (BP), Kedah; Bota Kanan (BK), Perak; and Bukit Paloh, Kuala Berang (KB), Terengganu. The goal of this study is to identify genetic differences in two subspecies of B. affinis in Malaysia. No previous reports were available on the genetic diversity, phylogenetic relationships and matrilineal hereditary structure of these terrapin populations in Malaysia. The sequencing identified 46 single nucleotide polymorphisms that defined six mitochondrial haplotypes in the Southern River terrapins. Tajima’s D test and Fu’s Fs neutrality tests were performed to evaluate the signatures of recent historical demographic events. Based on the tests, the B. affinis edwardmolli was newly subspecies identified in the west coast–northern region of Kedah state. In addition, the B. affinis edwardmolli in Bukit Paloh, Kuala Berang (KB), Terengganu (Population 4), was shown to have a single maternal lineage compared to other populations. Low genetic diversity, but significant genetic differences, were detected among the studied Southern River terrapin populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.