CFRP is an alternative technique for cracking control of high-chloride reinforced concrete (RC) beams. This research, therefore, investigates the strength performance and failure mode and cracking behaviour of RC beams incorporated with sea sand bonded externally with the carbon fibre reinforced polymer (CFRP) plate. Sea sand is used as a 100% replacement of fine aggregate. Three batches of RC beams were carried out in this research, including the control beam (no sea sand neither CFRP), RC beam with normal sand bonded with CFRP plate, and RC beam with sea sand and bonded with CFRP. A four-point bending test was performed under static loading for the specimens. Finite element simulation was modelled for further comparison. The experimental findings showed that the flexural capacity of the sea sand RC beam bonded externally with CFRP plate is 5.50% greater than the flexural strength of the beam without CFRP (control beam). Besides, results demonstrated that RC beams bonded externally with CFRP were failed by plate end debonding (PED) while the control RC beam without bonding was failed at the mid-span by concrete crushing. However, the bonded RC beams were stiffer, which could lead to lower crack spacing. Finite element simulation showed very acceptable results compared to the experimental results.
Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction ofribbed slab reduces concrete materials and thusthe cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab wastested underthree-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. Thisresearch showsthat SFRCRibbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.