Cell load variation is considered a significant shortcoming in scheduling of cellular manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to control cell load variation during the process of determining the best trading off values between in-house manufacturing and outsourcing. A genetic algorithm (GA) is developed because of the high potential of trapping in the local optima, and results are compared with the results of LINGO ® 12.0 software. The Taguchi method (an L_9 orthogonal optimization) is used to estimate parameters of GA in order to solve experiments derived from literature. An in-depth analysis is conducted on the results in consideration of various factors, and control charts are used on machine-load variation. Our findings indicate that the dynamic condition of product demands affects the routing of product parts and may induce machine-load variations that yield to cell-load diversity. An increase in product uncertainty level causes the loading level of each cell to vary, which in turn results in the development of "complex dummy sub-cells". The effect of the complex sub-cells is measured using another mathematical index. The results showed that the proposed GA can provide solutions with limited cell-load variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.