The crashworthiness of composite tubes is widely examined for various types of FRP composites. However, the use of hybrid composites potentially enhances the material characteristics under impact loading. In this regard, this study used a combination of unidirectional glass–carbon fibre reinforced epoxy resin as the hybrid composite tube fabricated by the pultrusion method. Five tubes with different length aspect ratios were fabricated and tested, in which the results demonstrate “how structural energy absorption affects by increasing the length of tubes”. Crash force efficiency was used as the criterion to show that the selected L/D are acceptable of crash resistance with 95% efficiency. Different chamfering shapes as the trigger mechanism were applied to the tubes and the triggering effect was examined to understand the impact capacity of different tubes. A finite element model was developed to evaluate different crashworthiness indicators of the test. The results were validated through a good agreement between experimental and numerical simulations. The experimental and numerical results show that hybrid glass/carbon tubes accomplish an average 25.34 kJ/kg specific energy absorption, average 1.43 kJ energy absorption, average 32.43 kN maximum peak load, and average 96.67% crash force efficiency under quasi-static axial loading. The results show that selecting the optimum trigger mechanism causes progressive collapse and increases the specific energy absorption by more than 35%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.