Gun powder is predicted to be more expensive in relation to the world oil shortage crisis in the future. However, cellulose (generic chemical formula (C6H10O5) is the carbohydrate that makes up the main structure of plants. It is more economical especially for countries with a lot of natural resources and rain forests like Malaysia. The finding of the study reveals the capability of nitrocellulose as gunpowder. In this research, a comparison of the same mass of nitrocellulose and gunpowder is made to find out which propellant produce longer distance and greater impact. The main objectives of this study are to find out the performance and capability of nitrocellulose extracted from Rhizophora apiculata compared to gunpowder in terms of velocity, calorific value of bullets and kinetic energy produced. The result shows that the nitrocellulose has better performance than gun powder. The new application of smokeless gun powder ensures troops especially snipers hardly being detected by enemy and at the same time improves safety and security level.
The hydrofoil is a hydro-lifting surface that significantly contributes to marine transportation such as a boat, ship, and submarine for its movement and maneuverability. The existing hydrofoils are in fixed-shaped National Advisory Committee for Aeronautics (NACA) profiles, depending merely on the variation of Angle of Attack (AOA) such as rudder, hydroplane, and propeller blade. This research is concerned with the deformable hydrofoil that aims at modifying its NACA profile rather than its AOA. However, there is still a lack of knowledge about designing an appropriate deformable hydrofoil. Therefore, a numerical investigation of hydrodynamic characteristics for selected hydrofoils was conducted. After undergoing the 2D numerical analysis (potential flow method) at specific conditions, several NACA profiles were chosen based on the performance of NACA profiles. NACA 0017 was selected as the initial shape for this research before it deformed to the optimized NACA profiles, NACA 6417, 8417, and 9517. The 3D CFD simulations using the finite volume method to obtain hydrodynamic characteristics at 0 deg AOA with a constant flow rate. The mesh sensitivity and convergence study are carried out to get consistent, validated, and reliable results. The final CFD modeled for propeller VP 1304 for open water test numerically. The results found that the performance of symmetry hydrofoil NACA 0017 at maximum AOA is not the highest compared to the other deformed NACA profiles at 0 deg AOA. The numerical open water test showed that the error obtained on K.T., K.Q., and efficiency is less than 8% compared to the experimental results. It shows that the results were in good agreement, and the numerical CFD setting can be used for different deformed profiles in the future.
The energy ship is a concept for offshore wind energy capture which has received very little attention until today. To this date, there had not been yet an experimental proof of concept. In order to tackle this issue, an experimental platform and data acquisition system has been developed. A 5.5m long sailing catamaran served as a platform equipped with a 240mm diameter water turbine. The energy ship platform has been tested several times in the actual river to investigate the workability of the platform and data acquisition system. Results show that energy ship platform can produced 500W electric power for a true wind speed of 10 knots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.