Machining is one of the most important processes in producing automotive component such as difficult-to-cut FCD700 cast iron grade. Efforts are continuously made to improve the machining technique for the benefit of human and environment. This paper presents an environmental friendly when turning FCD700 cast iron using carbide tool in the absent of coolant. The turning process was carried out in three medium of dry conditions i.e. without air, chilled air and normal air. The turning parameters studied were cutting speed (100-300 m/min), feed rate (0.1-0.4 mm/rev), and depth of cut (0.2-2.0 mm). Result shows that the average surface roughness (Ra) was greatly affected by the feed rate and the effect of depth of cut was negligible. Low Ra value was produced when using high cutting speed, especially at medium air temperature of 10 deg C. Whereas when turning at high depth of cut and high feed rate, the tool life was shorten drastically. In addition, the cutting speed was significantly affecting the tool life. The tool life was found to be inversely proportional with the cutting speed. The longest tool life was obtained at cutting speed of 100 m/min, feed rate of 0.15 mm/rev, depth of cut of 0.2 mm and temperature of -2 deg C. Generally, chilled air at temperature of -2deg C will increase the tool life, but the Ra obtained was deteriorated when compared at higher temperature of chilled air and without air cutting environment. Therefore, these findings can be used a guide depending on the preference of the user, either to obtain a better tool life or Ra value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.