Contact force between catenary and pantograph of high speed train is a crucial system to deliver power to the train. The inconsistence force between them can cause the contact wire oscillate a lot and it can damage the mechanical structure of system and produce electric arc that can reduce the performance of system. This project proposes a single-input fuzzy logic controller (SIFLC) to control the contact force between the pantograph-catenary by implement Safe Experimentation Dynamics (SED) method to tune the SIFLC parameters. The essential feature of SIFLC is that it is model-free type controller design with less pre-defined variables as compared to other existing model-based controllers. The performance of the SIFLC is analyzed in terms of input tracking of contact force of pantograph-catenary and time response specifications. A simplified model of three degree of freedom (3-DOF) pantograph-catenary system is considered. In this study, the simulation result shows that the SIFLC successfully track the given contact force with less overshoot with percentage different of peak to peak response from actual force 2% and fast response within 5.27s
Several studies has been conducted to economically cultivate the Monascus sp. However, the potential of using stirred drum bioreactor in solid state fermentation (SSF) for Monascus sp. cultivation has been relatively understudied. Oil palm frond (OPF) petiole has been used as a potential substrate due to its nutritional contents and to add more value to local agricultural waste. This study reports the production of red pigment by Monascus purpureus FTC 5357 in a 2.3 L bench top -stirred-drum bioreactor. The fungus was grown on moistened OPF substrate (60 % (w/w)) supplemented with 2% (w/w) of soy meal peptone. The effects of different aeration rates (0.3-1.0 vvm of humidified air), agitation programme (4-8 cycles per day), and substrate load capacity (25-40 % (v/v) of total drum capacity) on red pigment production are reported. Aeration rate showed a positively correlated interaction to red pigment production in which the highest red pigment were produced using1.0 vvm (6.09 AU/g dry solid), and non-aerated culture showed the lowest red pigment production (0.81 AU/g dry solid). The agitation programme was also showing the positive trend of interaction, in which 8 cycles per day showed the highest red pigment production (4.34 AU/g dry solid) and 4 cycles per day agitation showed the lowest red pigment production. The red pigment production was peaked at 30% (v/v) drum loading capacity (5.61 AU/g dry solid) and the lowest at 25% (v/v) (0.89 AU/g dry solid), whereas 40% (v/v) substrate capacity was incapable of being mixed due to low power output of agitating motor. Results suggested that OPF was a potent source of substrate for the cultivating Monascus purpureus using SSF and all 3 factors (aeration, substrate load capacity and agitation programme) were significantly influenced the red pigment production.
Microalgae are a promising alternative for biodiesel production and a valuable source of fatty acid methyl ester (FAME). In this research, Chlorella vulgaris has been chosen as the suitable microalgae because this species was able to produce highest oils for biodiesel processing. Previously, sodium alginate (SA) was used to entrap the microalgae in the culturing process due to its low toxicity and high transparency. However, SA have some disadvantages such as bead disruption which leading to the loss of microalgae cell. Therefore, this research has been conducted to evaluate the oil production of immobilised Chlorella vulgaris using different matric systems at different ratios which are 0.3:1, 1:1 and 2:1. Currently, six matric systems have been developed, they are SA as a control, a combination of SA and chitosan (SA+CT), SA and carrageenan (SA+CR), SA and gelatin (SA+GT), SA and calcium alginate (SA+CA), and SA and sodium carboxymethylcellulose (SA+CMC). The microalgae was first cultivated, harvested and extracted to produce oil, prior to use in the transesterification process. The SA+GT showed the highest oil yield with 59.14% and a total FAME of 0.56 mg/g. The FAME profile of oil extracted microalgae showed high potential for biodiesel production as it consisted of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3). The results proved that the combination of SA+GT had improved the oil yield and fatty acid composition as compared to the other matric systems, which may have useful application for the biodiesel industry. Copyright © 2020 BCREC Group. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.