Glycation is the result of covalent bonding of a free amino group of biological macromolecules with a reducing sugar, which results in the formation of a Schiff base that undergoes rearrangement, dehydration and cyclization to form a more stable Amadori product. The final products of nonenzymatic glycation of biomacromolecules like DNA, proteins and lipids are known as advanced glycation end products (AGEs). AGEs may be generated rapidly or over long times stimulated by distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. Both Schiff base and Amadori glycation products generate free radicals resulting in decline of antioxidant defense mechanisms and can damage cellular organelles and enzymes. This critical review primarily focuses on the mechanistic insight of glycation and the most probable route for the formation of glycation products and their therapeutic interventions. Furthermore, the prevention of glycation reaction using therapeutic drugs such as metformin, pyridoxamine and aminoguanidine (AG) are discussed with special emphasis on the novel concept of the bioconjugation of these drugs like, AG with gold nanoparticles (GNPs). At or above 10 mM concentration, AG is found to be toxic and therefore has serious health concerns, and the study warrants doing this novel bioconjugation of AG with GNPs. This approach might increase the efficacy of the AG at a reduced concentration with low or no toxicity. Using the concept of synthesis of GNPs with abovementioned drugs, it is assumed that toxicity of various drugs which are used at high doses can be minimized more effectively.
The present study is initially intended to evaluate antioxidant and β-hydroxy-β-methylglutaryl-CoA reductase (HMGR) inhibitory property of Ficus virens Ait., first by in vitro analyses followed by a corroboratory molecular informatics study. Our results show that of all the sequentially extracted fraction of F. virens bark and leaves extract, F. virens bark methanol extract exhibits strong radical scavenging, antioxidant and oxidative DNA damage protective activity, which is well correlated with its total phenolic content. In addition, F. virens bark methanol extract, which is non-cytotoxic, significantly and non-covalently inhibit the HMGR activity (IC50 = 3.45 ± 0.45 µg/ml) in comparison with other extracts. The mechanistic aspect of this inhibition activity is authenticated by molecular docking study of bioactive compounds as revealed from gas chromatography-mass spectrometry data, with HMGR. The analysis for the first time indicates that quinic acid (ΔG: -8.11 kcal/mol) and paravastatin (ΔG: -8.22 kcal/mol) exhibit almost same binding energy, while other compounds also showed good binding energy, suggesting that quinic acid alone or in combination with other major bioactive compound is probably responsible for HMGR inhibitory property of the extract and plausibly can be used in in vivo system for the management, prevention, and alleviation of hypercholesterolemia as well as hypercholesterolemia-induced oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.