SUMMARYCirculating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs.
Summary
Glioblastoma (GBM) is thought to be driven by a sub-population of cancer stem cells (CSCs) that self-renew and recapitulate tumor heterogeneity, yet remain poorly understood. Here we present a comparative histone modification analysis of GBM CSCs that reveals widespread activation of genes normally held in check by Polycomb repressors. These activated targets include a large set of developmental transcription factors (TFs) whose coordinated activation is unique to the CSCs. We demonstrate that a critical factor in the set, ASCL1, activates Wnt signaling by repressing the negative regulator DKK1. We show that ASCL1 is essential for maintenance and in vivo tumorigenicity of GBM CSCs. Genomewide binding profiles for ASCL1 and the Wnt effector LEF1 provide mechanistic insight and suggest widespread interactions between the TF module and the signaling pathway. Our findings demonstrate regulatory connections between ASCL1, Wnt signaling and collaborating TFs that are essential for the maintenance and tumorigenicity of GBM CSCs.
Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of hypertension and renal injury. However, the direct effects of TNF-α on renal hemodynamic and excretory function are not yet clearly defined. We examined the renal responses to infusion of TNF-α (0.33 ng·g−1·min−1) in anesthetized mice. Renal blood flow (RBF) and glomerular filtration rate (GFR) were determined by PAH and inulin clearance. The urine was collected from a cannula inserted into the bladder. Following the 60-min control clearance period, TNF-α infusion was initiated and 15 min were given for stabilization followed by another 60-min clearance period. TNF-α alone (n = 7) caused decreases in RBF (7.9 ± 0.3 to 6.4 ± 0.3 ml·min−1·g−1) and GFR (1.04 ± 0.06 to 0.62 ± 0.08 ml·min−1·g−1) as well as increases in absolute (0.8 ± 0.3 to 1.4 ± 0.3 μmol·min−1·g−1) and fractional excretion of sodium (0.5 ± 0.2 to 1.5 ± 0.4%) without affecting arterial pressure. TNF-α also increased 8-isoprostane excretion (8.10 ± 1.09 to 11.13 ± 1.34 pg·min−1·g−1). Pretreatment with TNF-α blocker etanercept (5 mg/kg sc; 24 and 3 h before TNF-α infusion; n = 6) abolished these responses. However, TNF-α induced an increase in RBF and caused attenuation of the GFR reduction in mice pretreated with superoxide (O2−) scavenger tempol (2 μg·g−1·min−1; n = 6). Pretreatment with nitric oxide (NO) synthase inhibitor nitro-l-arginine methyl ester (0.1 μg·g−1·min−1; n = 6) resulted in further enhancement in vasoconstriction while natriuresis remained unaffected in response to TNF-α. These data suggest that TNF-α induces renal vasoconstriction and hypofiltration via enhancing the activity of O2− and thus reducing the activity of NO. The natriuretic response to TNF-α is related to its direct effects on tubular sodium reabsorption.
In contrast with other studies where greater diversity exists, CTX-M-15 was the only CTX-M ESBL produced in this Indian collection of unrelated E. coli and K. pneumoniae. This is the first systematic survey report from India detecting CTX-M-type beta-lactamases This is also the first report indicating such high mobility/diversity of insertion of IS26 in close association with bla(CTX-M) in a single bacterial collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.