The implementation of finite difference method is used to solve shallow water equations under the extreme conditions. The cases such as dam break and wave propagation over uneven bottom seabed are selected to test the ordinary schemes of Lax-Friederichs and Lax-Wendroff numerical schemes. The test cases include the source term for wave propagation and exclude the source term for dam break. The main aim of this paper is to revisit the application of Lax-Friederichs and Lax-Wendroff numerical schemes at simulating dam break and wave propagation over uneven bottom seabed. For the case of the dam break, the two steps of Lax-Friederichs scheme produce nonoscillation numerical results, however, suffering from some of dissipation. Moreover, the two steps of Lax-Wendroff scheme suffers a very bad oscillation. It seems that these numerical schemes cannot solve the problem at discontinuities which leads to oscillation and dissipation. For wave propagation case, those numerical schemes produce inaccurate information of free surface and velocity due to the uneven seabed profile. Therefore, finite difference is unable to model shallow water equations under uneven bottom seabed with high accuracy compared to the analytical solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.