Deepfake technology is an emerging technology prevailing in today's digital world. It is used to create fake videos by exploiting some of the artificial intelligence (AI) based techniques and deep learning methodology. The facial expressions and motion effects are primarily used to train and manipulate the seed frame of someone to generate the desired morphed video frames that mimic as if they are real. Deepfake technology is used to make a highly realistic fake video that can be widely used to spread the wrong information or fake news by regarding any celebrity or political leader which is not created by them. Due to the high impact of social media, these fake videos can reach millions of views within an hour and create a negative impact on our society. This chapter includes the crucial points on methodology, approach, and counter applications pertinent to deep-fake technology highlighting the issues, challenges, and counter measures to be adopted. Through observations and analysis, the chapter will conclude with profound findings and establishes the future directions of this technology.
Deep-Fake Technique is a new scientific method that uses Artificial-Intelligince to make fake videos with an affect of facial expressions and coordinated movement of lips. This technology is frequently employed in a variety of contexts with various goals. Deep-Fake technology is being used to generate an extremely realistic fake video that can be widely distributed to promote false information or fake news about any celebrity or leader that was not created by them. Because of the widespread use of social media, these fraudulent videos can garner billions of views in under an hour and have a significant impact on our culture. Deep-Fakes are a threat to our celebrities, democracy, religious views, and commerce, according to the findings, but they can be managed through rules and regulations, strong company policy, and general internet user awareness and education. We need to devise a process for examining such video and distinguishing between actual and fraudulent footage.
Man have always been, inherently, curious creatures. They ask questions in order to satiate their insatiable curiosity. For example, kids ask questions to learn more from their teachers, teachers ask questions to assist themselves to evaluate student performance, and we all ask questions in our daily lives. Numerous learning exchanges, ranging from one-on-one tutoring sessions to thorough exams, as well as real-life debates, rely heavily on questions. One notable fact is that, due to their inconsistency in particular contexts, humans are often inept at asking appropriate questions. It has been discovered that most people have difficulty identifying their own knowledge gaps. This becomes our primary motivator for automating question generation in the hopes that the benefits of an automated Question Generation (QG) system will help humans achieve their useful inquiry needs. QG and Information Extraction (IE) have become two major issues for language processing communities, and QG has recently become an important component of learning environments, systems, and information seeking systems, among other applications. The Text-to-Question generation job has piqued the interest of the Natural Language Processing (NLP), Natural Language Generation (NLG), Intelligent Tutoring System (ITS), and Information Retrieval (IR) groups as a possible option for the shared task. A text is submitted to a QG system in the Text-to-Question generation task. Its purpose would be to create a series of questions for which the text has answers (such as a word, a set of words, a single sentence, a text, a set of texts, a stretch of conversational dialogue, an inadequate query, and so on).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.