This paper reports the ability of graphene oxide (GO) as a radionuclide adsorbent material for an alternative approach in nuclear medicine radioactive waste management. Notable physicochemical properties of GO mainly consist of oxygen-containing functional groups on its basal plane and edges site in the form of epoxy, hydroxyl, and carboxyl groups, making it a promising candidate for radionuclide extraction material from aqueous solution. Herein, GO was synthesised via a simplified Hummers method. The radioactive clinical waste, which is urine, was collected right after the scanning procedure and mixed with GO in various concentrations: 1 mg/ml, 1.5 mg/ml, 2 mg/ml, 2.5 mg/ml, and 3 mg/ml. The mixture was then filtered using micropore filter paper, leaving sediments on the filter paper and wastewater residues. The radioactivity of sediment and water residue was determined by using a well counter after 3, 6, 9, and 12 hours of filtration process. The activities of the sediment and water residues were found to be decreased with increasing GO concentrations. The FESEM image revealed high agglomeration structure when the sample was treated with GO of 3 mg/ml concentration. Further analysis via EDX showed the presence of other elements in the urine, which led to its attraction to the GO-layered sheets. This analysis also confirmed the presence of oxygen-functioning group in GO that facilitated the agglomeration process and solidified the radionuclide waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.