Thermodynamic analysis of the isentropic and polytropic expansion profiles of typical working fluids was carried out in order to design a highly efficient displacement-type expander for a low-temperature Rankine cycle. First, expansion profiles were analyzed for three typical working fluids: HFC245fa, ammonia, and supercritical CO 2 . The hot-side temperature ranged from 60 ° to 120 °C, and the cold-side temperature was 10 °C. In the analysis, isentropic and polytropic expansion processes were assumed to behave thermodynamically. In the analysis results, we noted similarities among the expansion profiles for different hot-side temperatures. This similarity allowed us to introduce the unique concept of a variable mechanism for expansion profile fitting in displacement-type expanders. This variable expansion mechanism can be achieved by simply adjusting the position of the inlet and/or outlet port of the expander.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.