The surface roughness of manufactured product is final results of the turning technique parameters, and an critical characteristics that outline product first-rate, aesthetics etc. It imposes one of the most essential constraints for the choice of machines and slicing parameters in manner planning. In this paper, Artificial Neural Network (ANN) method has been used to develop surface roughness prediction model the use of experimental statistics, wherein Feed Forward Neural Network (FFNN) the usage of Back Propagation set of rules and Levenberg-Marquardt education function has been used. The work has been done using Neural etwork Toolbox in MATLAB. The overall performance of the version has been assessed based totally on Regression analysis, Mean Square Error (MSE) and Magnitude of Relative Error (MRE). A three-2-1 model with two neurons in the hidden layer turned into discovered to be the excellent developed model, having universal regression ( R) cost of zero.9923 and pleasant validation overall performance MSE value of 0.00913. The ANN model confirmed incredible consequences for forecasting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.