Study Design.
Experimental Cadaveric Biomechanical Study.
Objective.
To establish an experimental procedure in cadavers to estimate joint stiffness/stability at craniovertebral junction (CVJ) region with various implant systems and to develop/validate an indigenous cost effective 3D—FEM (three-dimensional finite element model) of CVJ region.
Summary of Background Data.
Finite element analysis (FEM) tools can provide estimates of internal stress and strain in response to external loading of various implant systems used in CVJ fixations.
Methods.
Experimental setup for conducting biomechanical movements on CVJ region of cadaver was developed using cost effective innovative tools. A manually actuated seven- degrees of freedom parallel manipulator motion testing system (MA7DPM) was designed and developed to impart designed trajectories and to conduct various biomechanical motion studies at CVJ region for the present study.
Results.
FEM model of CVJ region was developed and subsequently validated with CVJ morphometry data of 15 human subjects of Asian origin. Validated FEM was subjected to force motion studies at the CVJ region. The force-motion maps obtained from the FEM studies were subsequently validated against biomechanical experiment results from cadaveric experiment results obtained with three different implant fixations.
Conclusions.
A cost effective biomechanical tool (which did not require decapitation of cadaveric head) and a customised chair (to place cadaver in sitting position during conduct of biomechanical movements simulating real-life scenario) was indigenously designed and developed. Developed biomechanical tool (MA7DPM) for this study is likely to be useful for stress-testing analysis of various implant systems for individual patients undergoing surgery at CVJ region in near future.
Level of Evidence: 5
An upper limb exoskeleton is being used as master for teleoperation designed to control KUKA KR5 robot that is not directly accessible. Design and implementation issues for this task have been discussed. The connectivity is through .NET remoting, gravity balancing with springs and compacts solutions for alignments of collocated shafts have been achieved through design.
The design and development of an upper limb exoskeleton are being discussed for the tele-operation in order to control the KUKA KR5 industrial robot. When sufficient resolution is not provided by the visual feedback, feedback of haptic provides a qualitative understanding of changes in the remote conditions. This also provides tactile feedback from the virtual and real environment. Peg in a hole operation using exoskeleton works as the master for tele-operation in order to control the robot using immersive environment as visual feedback for the operator. The application of this work can be implemented as a nuclear power generation plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.