Spectrum sensing for cognitive radio requires speed and good detection performance at very low SNR ratios. There is no single-stage spectrum sensing technique that is perfect enough to be implemented in practical cognitive radio. In this paper, the authors propose a new parallel fully blind multistage detector. They assume the appropriate stage based on the estimated SNR values that are achieved from the SNR estimator. Energy detection is used in first stage for its simplicity and sensing accuracy at high SNR. For low SNRs, they adopt the maximum eigenvalues detector with different smoothing factor in higher stages. The sensing accuracy for the maximum eigenvalue detector technique improves with higher value of the smoothing factor. However, the computational complexity will increase significantly. They analyze the performance of two cases of the proposed detector: two-stage and three-stage schemes. The simulation results show that the proposed detector improves spectrum sensing in terms of accuracy and speed.
Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.