Acetyl-CoA carboxylase (ACC) enzyme plays an important role in the regulation of biosynthesis and oxidation of fatty acids. ACC is a recognized drug target for the treatment of obesity and diabetes. Combination of ligand and structure-based in silico methods along with activity and toxicity prediction provides best lead compounds in the drug discovery process. In this study, a data-set of 100 ACC inhibitors were used for the development of comparative molecular field analysis (CoMFA) and comparative molecular similarity index matrix analysis (CoMSIA) models. The generated contour maps were used for the design of novel ACC inhibitors. CoMFA and CoMSIA models were used for the predication of activity of designed compounds. In silico toxicity risk prediction study was carried out for the designed compounds. Molecular docking and dynamic simulations studies were performed to know the binding mode of designed compounds with the ACC enzyme. The designed compounds showed interactions with key amino acid residues important for catalysis, and good correlation was observed between binding free energy and inhibition of ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.