We present a detailed study of structural, magnetic and thermodynamic properties of a series of Heusler alloys Fe2-xMnxCrAl (x = 0, 0.25, 0.5, 0.75 and 1). Structural investigation of this series is carried out using high resolution synchrotron X-ray diffraction. Results suggest that with increasing Mn concentration, the L21 structure of Fe2CrAl is destabilized. The DC magnetization results show a decrement in paramagnetic (PM) to ferromagnetic (FM) phase transition temperature (TC) with increasing Mn concentration. From the systematic analysis of magnetic memory effect, heat capacity, time dependent magnetization, and DC field dependent AC susceptibility studies it is observed that, Fe2CrAl exhibits cluster glass(CG)-like transition approximately at 3.9 K (Tf2). The alloys, Fe1.75Mn0.25CrAl and Fe1.5Mn0.5CrAl exhibit double CG-like transitions near Tf1 ~ 22 K, Tf2 ~ 4.2 K and Tf1 ~ 30.4 K, Tf2 ~ 9.5 K respectively, however, in Fe1.25Mn0.75CrAl, a single CG-like transition is noted at Tf2 ~ 11.5 K below TC. Interestingly, FeMnCrAl shows the absence of long ranged magnetic ordering and this alloy undergoes three CG-like transitions at ~22 K (Tf*), 16.6 K (Tf1) and 11 K (Tf2). At high temperatures, a detailed analysis of temperature response of inverse DC susceptibility clearly reveals the observation of Griffiths phase (GP) above 300 K (T*) in Fe2CrAl and this phase persists with Mn concentration with a decrement in T*.
We report the results of our investigations on the influence of partial substitution of Er and Gd for Dy on the magnetic and magnetoelectric properties of DyFe 0.5 Cr 0.5 O 3 , which is known to be a multiferroic system. Magnetic susceptibility and heat capacity data, apart from confirming the occurrence of magnetic transitions at ~ 121 and 13 K in DyFe 0.5 Cr 0.5 O 3 , bring out that the lower transition temperature only is suppressed by rare-earth substitution.Multiferroic behavior is found to persist in Dy 0.4 Ln 0.6 Fe 0.5 Cr 0.5 O 3 (Ln= Er and Gd). There is an evidence for magnetoelectric coupling in all these materials with qualitative differences in its behavior as the temperature is changed across these two transitions. Remnant electric polarization is observed for all the compounds. The most notable observation is that electric polarization is seen to get enhanced as a result of rare-earth substitution with respect to that in DyFe 0.5 Cr 0.5 O 3 . Interestingly, similar trend is seen in magnetocaloric effect, consistent with the existence of magnetoelectric coupling. The results thus provide evidence for the tuning of magnetoelectric coupling by rare-earth substitution in this family of oxides.2
The binary intermetallic compound ErPd has been investigated using dc and ac magnetic susceptibilities, magnetic memory effect, isothermal magnetization, non-linear dc susceptibility, heat capacity and magnetocaloric effect studies. Interestingly, even though the compound does not show geometrical frustration it undergoes glassy magnetic phase transition below 17.2 K. Investigation of dc magnetization and heat capacity data divulged absence of long-ranged magnetic ordering. Through the magnetic memory effect, time dependent magnetization and ac susceptibility studies it was revealed that the compound undergoes glass-like freezing below 17.2 K. Analysis of frequency dependence of this transition temperature through scaling and Arrhenius law; along with the Mydosh parameter indicate, that the dynamics in ErPd are due to the presence of strongly interacting superspins rather than individual spins. This phase transition was further investigated by non-linear dc susceptibility and was characterized by static critical exponents γ and δ. Our results indicate that this compound shows the signature of superspin glass at low temperature. Additionally, both conventional and inverse magnetocaloric effect was observed with a large value of magnetic entropy change and relative cooling power. Our results suggest that ErPd can be classified as a superspin glass system with large magnetocaloric effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.