This paper proposes a monitoring system retro-fittable for existing Intravenous (IV) infusion setup. Traditionally, doctors and nurses use their experience to estimate the time required by an IV bottle to empty which makes the IV therapy vulnerable to human error. The current study proposes an internet connected monitoring platform for IV drip chambers. The device enables doctors and nursing staff to monitor the drip parameters wirelessly while emphasizing on low costs and high degree of reliability. It has two main units, namely chamber unit and pole unit. Chamber unit houses two types of sensors, optical based for drop detection and capacitive based for level detection, both of which are placed on the chamber unit. The pole unit majorly consists of a microcontroller and a GSM-based (Global System Mobile Communication) communication module. In addition, the device was tested along with various parameters like accuracy, readout stability, change in fluid used, changes in ambient conditions, end chamber conditions, optical unit malfunctions. Finally, the monitored data was securely and reliably transmitted to commercial cloud service using HTTP API calls (Hyper Text Transfer Protocol) (Application Programming Interface). This data was stored and visualized for ease of readability for nurses and doctors.
CeF3 nanophosphors have been extensively investigated in recent years for lighting and numerous bio-applications. Downconversion emissions in CeF3:Eu(3+)/Tb(3+) phosphors were studied with the objective of attaining a white light emitting composition, by means of a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size range of 8-10 nm. Various studies were undertook utilizing different doping concentrations and respective fluorescence studies were carried out to optimize dopant concentrations while achieving maximum luminescence intensity. From PL results, it was observed that the efficient energy transfers from the donor to the acceptor ions. Different concentrations of Tb(3+), Eu(3+) were doped in order to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu(3+), Tb(3+)) when excited at the 4f → 5d transition of Ce(3+). The chromaticity coordinates for CeF3 doped with Eu(3+) and Tb(3+) were calculated and an emission very close to white light was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.