Engineering field has inherently many combinatorial optimization problems which are hard to solve in some definite interval of time especially when input size is big. Although traditional algorithms yield most optimal answers, they need large amount of time to solve the problems. A new branch of algorithms known as evolutionary algorithms solve these problems in less time. Such algorithms have landed themselves for solving combinatorial optimization problems independently, but alone they have not proved efficient. However, these algorithms can be joined with each other and new hybrid algorithms can be designed and further analyzed. In this paper, hierarchical clustering technique is merged with IAMB-GA with Catfish-PSO algorithm, which is a hybrid genetic algorithm. Clustering is done for reducing problem into sub problems and effectively solving it. Results taken with different cluster sizes and compared with hybrid algorithm clearly show that hierarchical clustering with hybrid GA is more effective in obtaining optimal answers than hybrid GA alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.