Solar energy is the most affordable source of energy. Parabolic trough systems are used to concentrate and extract heat, therefore it’s very significant to analyse its performance in terms of energy and exergy. Exergy based analysis of the system ensures the eradication of losses, resulting in the yield of energy of the highest quality. In this paper, an investigation has been carried out using numerical simulation with an objective of analysis of Parabolic Trough Collectors on the basis of energy and exergy. Detailed second law analysis has been performed by varying the system and operating parameters through computer simulation. Exergy output has been determined by analysing the effect of major system parameters, namely, mirror reflectivity, glass transmissivity, absorptivity, the diameter of glass envelop, and the receiver. The operating parameters considered in the investigation are insolation and temperature rise parameters. The extensive investigation of the parabolic trough of a concentrated solar power plant for various design parameters in the range of operating parameters reveals that it is beneficial to operate the system at higher temperature as opposed to the preference of the operating system at lower temperature from purely thermal considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.