The agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people’s health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects. The priority highlights a need for a sustainable and environment-friendly upgradation of the present agricultural systems to utilize the beneficial aspects related to harnessing the gene-microbiome strategies which would help in the restoration and replenishment of the microbial pool. Thus, exploring the microbiome is the utmost priority which gives a deep insight into the different aspects related to soil and plant and stands out as an important contributor to plant health and productivity. “Microbes” are important drivers for the biogeochemical cycles and targets like sustainability and safety. This essential microbial bulk (soil microbiome) is greatly influenced by agricultural/farming practices. Therefore, with the help of microbiome engineering technologies like meta-transcriptomics , meta-proteomics , metabolomics , and novel gene-altering techniques , we can easily screen out the highly diverse and balanced microbial population in the bulk of soil, enhancing the soil’s health and productivity. Importantly, we need to change our cultivation strategies to attain such sustainability. There is an urgent need to revert to natural/organic systems of cultivation patterns where the microbiome hub can be properly utilized to strengthen soil health, decrease insect pest and disease incidence, reduce greenhouse gas emissions, and ultimately prevent environmental degradation. Through this article, we wish to propose a shift in the cultivation pattern from chemical to the novel , upgraded gene-assisted designed eco-friendly methodologies which can help in incorporating , exploring , and harnessing the right microbiome consortium and can further help in the progression of environmentally friendly microbiome technologies for agricultural safety and productivity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10142-023-00982-9.
Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a signi cant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcome of non-treated seed and growth media, which are important factors in low productivity. The farmers do not take these issues into account, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70-80%), vermiculite (10-15%), coco peat (10-15%), and Rhizobium (0-1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques has been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating bene cial genetic modi cations into the most signi cant agricultural species on the planet. CRISPR/Cas9 has evolved into a potent genomeediting tool for imparting genetic modi cations to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, metagenomics, etc., addresses conservation problems, while whole-genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species.
Globally, industrial farming endangers crucial ecological mechanisms upon which food production relies, while 815 million people are undernourished and a significant number are malnourished. Zero Hunger aims to concurrently solve global ecological sustainability and food security concerns. Recent breakthroughs in molecular tools and approaches have allowed scientists to detect and comprehend the nature and structure of agro-biodiversity at the molecular and genetic levels, providing us an advantage over traditional methods of crop breeding. These bioinformatics techniques let us optimize our target plants for our soil-less medium and vice versa. Most of the soil-borne and seed-borne diseases are the outcome of non-treated seed and growth media, which are important factors in low productivity. The farmers do not take these issues into account, thereby facing problems growing healthy crops and suffering economic losses. This study is going to help the farmers increase their eco-friendly, chemical residue-free, quality yield of crops and their economic returns. The present invention discloses a synergistic soil-less medium that consists of only four ingredients mixed in optimal ratios by weight: vermicompost (70–80%), vermiculite (10–15%), coco peat (10–15%), and Rhizobium (0–1%). The medium exhibits better physical and chemical characteristics than existing conventional media. The vermiculite to coco peat ratio is reduced, while the vermicompost ratio is increased, with the goals of lowering toxicity, increasing plant and water holding capacity, avoiding drying of the media, and conserving water. The medium provides balanced nutrition and proper ventilation for seed germination and the growth of seedlings. Rhizobium is also used to treat the plastic bags and seeds. The results clearly show that the current synergistic soil-less environment is best for complete plant growth. Securing genetic advantages via sexual recombination, induced random mutations, and transgenic techniques has been essential for the development of improved agricultural varieties. The recent availability of targeted genome-editing technology provides a new path for integrating beneficial genetic modifications into the most significant agricultural species on the planet. CRISPR/Cas9 has evolved into a potent genome-editing tool for imparting genetic modifications to crop species. In addition, the integration of analytical methods like population genomics, phylogenomics, metagenomics, etc., addresses conservation problems, while whole-genome sequencing has opened up a new dimension for explaining the genome architecture and its interactions with other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.