MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development.
Plants recruit positive and negative regulators for fine tuning the balance between growth and development. Negative regulators of pathogen defense generally modulate defense hormone biosynthesis and signaling. Here, we report a mechanism for attenuation of the defense response in Arabidopsis (), which is mediated by the polycomb-group repressor MEDEA (MEA). Our results showed that pathogen inoculation or exogenous application of salicylic acid, methyl jasmonate, or the bacterial 22-amino acid domain of flagellin peptide induces the expression of expression was higher when plants were inoculated with the avirulent strain of pv. () carrying the effector () compared to the virulent strain. remains suppressed during the vegetative phase via DNA and histone (H3K27) methylation, and only the maternal copy is expressed in the female gametophyte and endosperm via histone and DNA demethylation. In contrast, induces high levels of expression via hyper-accumulation of H3K4me3 at the locus.-overexpressing transgenic plants are susceptible to the fungal pathogen and bacterial pathogens and , whereas mutant plants are more resistant to bacterial pathogens. -mediated immunity requires the function of RESISTANCE TO P. SYRINGAE2 (RPS2) in Arabidopsis. Using transcriptional analysis and chromatin immunoprecipitation, we established that MEA directly targets and suppresses its transcription. We screened an Arabidopsis cDNA library using MEA as the bait in a yeast two-hybrid assay and identified DROUGHT-INDUCED19, a transcription factor that interacts with MEA and recruits it at the promoter. The results identified a previously unknown mechanism of defense response attenuation in plants.
HighlightThis study demonstrates that overexpression of POTH15 (a class-I KNOX in potato) can alter multiple morphological traits, and identifies numerous POTH15 targets involved in diverse developmental processes in potato.
The gametophyte to sporophyte transition is an important event facilitating the alternation of generations in a plant life cycle. The paternally imprinted epigenetic regulators DEMETER(DME) and MEDEA(MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte to sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are maternal lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of multiple shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation(ChIP) and DNA methylation analysis revealed several shoot regulators as potential targets of MEA and DME, with mea-1-/-;dme-2-/- seedlings showcasing their misexpression. Knockdown of upregulated shoot-promoting factors STM, CUC2, and PLT5 rescued the ectopic shoot phenotypes. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development to orchestrate the plant architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.