Despite favorable optical properties and band-gap tunability, Cu(In,Ga)S 2 solar cell performance is often limited due to bulk and interface recombination losses. We show that Cu-deficient absorbers have lower bulk recombination, owing to the suppression of the detrimental antisite defects. Zn(O,S) buffer layer further lowers the interface recombination due to appropriate band alignment and suppression of defects at the interface. This leads to a high-quality absorber with lower interface losses, resulting in a high power conversion efficiency of over 15%.
Thin-film solar cells consist of several layers. The interfaces between these layers can provide critical recombination paths and consequently play a vital role in the efficiency of the solar cell. One of the main challenges for polycrystalline semiconductor absorber materials is the absorber-buffer interface. The Cu(In, Ga)Se 2 system is particularly interesting in this context, since Cu-rich absorbers are dominated by recombination at the interface, while Cu-poor ones are not. This paper unveils the root cause of the challenge in the interface of Cu-rich solar cells in terms of a Se-related defect with an activation energy of 200 ± 20 meV. This defect causes interface recombination and is responsible for the deficiency of open-circuit voltage in Cu-rich cells. Moreover, this paper demonstrates that the origin of this defect is due to the etching step necessary to remove secondary phases. Postdeposition surface treatments or modified buffer layers are shown to passivate this defect, to reduce interface recombination, and to increase the efficiency.
The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe 2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe 2 solar cells.
Interface recombination in a complex multilayered thin‐film solar structure causes a disparity between the internal open‐circuit voltage (VOC,in), measured by photoluminescence, and the external open‐circuit voltage (VOC,ex), that is, a VOC deficit. Aspirations to reach higher VOC,ex values require a comprehensive knowledge of the connection between VOC deficit and interface recombination. Here, a near‐surface defect model is developed for copper indium di‐selenide solar cells grown under Cu‐excess conditions. These cell show the typical signatures of interface recombination: a strong disparity between VOC,in and VOC,ex, and extrapolation of the temperature dependent q·VOC,ex to a value below the bandgap energy. Yet, these cells do not suffer from reduced interface bandgap or from Fermi‐level pinning. The model presented is based on experimental analysis of admittance and deep‐level transient spectroscopy, which show the signature of an acceptor defect. Numerical simulations using the near‐surface defects model show the signatures of interface recombination without the need for a reduced interface bandgap or Fermi‐level pinning. These findings demonstrate that the VOC,in measurements alone can be inconclusive and might conceal the information on interface recombination pathways, establishing the need for complementary techniques like temperature dependent current–voltage measurements to identify the cause of interface recombination in the devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.