In the recent past, bismuth oxyhalides (BiOX) have been widely used for the photocatalytic degradation of the organic pollutants and other environmental remediation because of their higher stability, economic viability, nontoxicity and effective charge separation. We begin with the review of the different approaches adopted so far for BiOX (X = Cl, Br, and I) synthesis and a study of their photocatalytic performances under UV and visible light towards the various organic as well as inorganic pollutants. Later on, a study on further enhancement of the efficiency of BiOX under UV and visible light irradiation using recent advancements would be presented. The new approaches involve controlled morphology by forming composite and hybrid materials with other semiconductors and also doping with other metals and nonmetals that would undoubtedly be beneficial in the interfacial charge transfer and efficient inhibition of the photo-generated species. Herein, we would also exploit the recent developments in the research strategies for enhancing photocatalytic activity of BiOX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.