Anomaly detection refers to the identification of patterns in a dataset that do not conform to expected patterns. Such non-conformant patterns typically correspond to samples of interest and are assigned to different labels in different domains, such as outliers, anomalies, exceptions, and malware. A daunting challenge is to detect anomalies in rapid voluminous streams of data.This paper presents a novel, generic real-time distributed anomaly detection framework for multi-source stream data. As a case study, we investigate anomaly detection for a multi-source VMware-based cloud data center, which maintains a large number of virtual machines (VMs). This framework continuously monitors VMware performance stream data related to CPU statistics (e.g., load and usage). It collects data simultaneously from all of the VMs connected to the network and notifies the resource manager to reschedule its CPU resources dynamically when it identifies any abnormal behavior from its collected data. A semi-supervised clustering technique is used to build a model from benign training data only. During testing, if a data instance deviates significantly from the model, then it is flagged as an anomaly.Effective anomaly detection in this case demands a distributed framework with high throughput and low latency. Distributed streaming frameworks like Apache Storm, Apache Spark, S4, and others are designed for a lower data processing time and a higher throughput than standard centralized frameworks. We have experimentally compared the average processing latency of a tuple during clustering and prediction in both Spark and Storm and demonstrated that Spark processes a tuple much quicker than storm on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.