When a laser beam scans once across the surface of a metallic powder bed, the resulting track may be continuous with a crescent or an elliptic cross-section, irregularly broken, balled or only partially melted. This paper reports what laser powers and scan speeds lead to what types of track, for a CO2 laser beam focused to 0.55 mm and 1.1 mm diameters, scanning over beds made from M2 and H13 tool steel and 314S-HC stainless steel powders. Beds have been made with particle size ranges from 300 μm to 150 μm, from 150 μm to 75 μm, from 75 μm to 38 μm, and less than 38 μm. Measurements are also reported of bed physical properties that are used in a finite element model to predict melt pool dimensions and temperatures. Boundaries between regions of different track formation are explained in terms of melt surface temperature gradients, melt pool length-diameter ratio instabilities, and transitions from partial to complete melting. Implications for building metal parts in powder beds without supports are considered. The modelling is briefly extended to multi-track and multi-layer processing, to conclude that bonding by remelting between layers, while still maintaining control of the melt flow, places severe constraints on the maximum allowable layer thickness.
In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layer adhesion on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-build samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.