Road traffic accidents (RTAs) are among the top causes of mortality and disability globally, particularly in developing nations like Iran. In this study, RTAs were analyzed to develop precise predictive models for predicting the frequency of accidents in the Kerman Province (southeastern Iran) using the autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modeling methods. The findings demonstrate that including factors regarding humans, vehicles, and elements of nature in the time-series analysis of accident records resulted in the development of a more reliable prediction model than utilizing only aggregated accident count. The understanding of safety on the road is increased by this research, which also offers a method for forecasting that utilizes a variety of parameters relating to people, cars, and the environment. The findings of this research are likely to contribute to lowering the incidence of RTAs in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.