The presence of bruises on fruits often indicates cell damage, which can lead to a decrease in the ability of the peel to keep oxygen away from the fruits, and as a result, oxygen breaks down cell walls and membranes damaging fruit content. When chemicals in the fruit are oxidized by enzymes such as polyphenol oxidase, the chemical reaction produces an undesirable and apparent brown color effect, among others. Early detection of bruising prevents low-quality fruit from entering the consumer market. Hereupon, the present paper aims at early identification of bruised lemon fruits using 3D-convolutional neural networks (3D-CNN) via a local spectral-spatial hyperspectral imaging technique, which takes into account adjacent image pixel information in both the frequency (wavelength) and spatial domains of a 3D-tensor hyperspectral image of input lemon fruits. A total of 70 sound lemons were picked up from orchards. First, all fruits were labeled and the hyperspectral images (wavelength range 400–1100 nm) were captured as belonging to the healthy (unbruised) class (class label 0). Next, bruising was applied to each lemon by freefall. Then, the hyperspectral images of all bruised samples were captured in a time gap of 8 (class label 1) and 16 h (class label 2) after bruising was induced, thus resulting in a 3-class ternary classification problem. Four well-known 3D-CNN model namely ResNet, ShuffleNet, DenseNet, and MobileNet were used to classify bruised lemons in Python. Results revealed that the highest classification accuracy (90.47%) was obtained by the ResNet model, followed by DenseNet (85.71%), ShuffleNet (80.95%) and MobileNet (73.80%); all over the test set. ResNet model had larger parameter sizes, but it was proven to be trained faster than other models with fewer number of free parameters. ShuffleNet and MobileNet were easier to train and they needed less storage, but they could not achieve a classification error as low as the other two counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.