Flow loops and computational fluid dynamics are the main research approaches for resolving the hole-cleaning problems. Cutting transport phenomena can be considered as a Computational Fluid Dynamic (CFD) model by using Eulerian assumptions for the turbulent liquid-solid flow in concentric annuli. The effect of time along with the main operational characteristics on the hole-cleaning phenomena is not negligible but recent studies have had paid little attention to it. Poor near bit cleaning causes many problems such as bit balling, decline in the rate of penetration, pipe sticking, etc. In addition to the effect of inclination, drill pipe rotary speed, cutting size, nozzle velocity and fluid viscosity as well as the effect of the bit nozzle arrangement on the cutting transport process were discussed. The results demonstrate that at a critical inclination angle of 30 degrees the cutting transport is inefficient. For all sections, the effect of drill pipe rotary speed was negligible at high velocities. In the horizontal section, at low flow rates and high drill pipe rotation speeds, Newtonian viscous fluids or water has no effect on the time needed for initial holecleaning but by removing the drill pipe rotation speed in similar conditions, a dramatic influence on time is observed. In inclined annuli, increasing the cuttings size and decreasing the nozzle velocity result in having no cutting in the output. Under critical inclination (30 degrees) the effect of the nozzle angle pattern on the hole-cleaning time is negligible. However, for a vertical annulus, the nozzle angle significantly influences the cutting transport. The best performance is obtained when the nozzle angle was perpendicular to the drill pipe axes. Figure 1 (a) Flow Loop sketch and its similarity with a real well. Four nozzles (b) and cutting inlet were located on the right-hand side and one outlet was located on the left side. The drilling fluid was pumped through the drill pipe and then came into the annulus with the nozzles to remove the initial cuttings that were injected through the cutting inlet (c).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.