Considering the importance and application of ultrahigh temperature ceramics in oxidizing environments, in this research, the effect of ZrC content and spark plasma sintering parameters (temperature, time and pressure) on the oxidation response of ZrB2–SiC composites has been investigated. After fabricating the ternary composite samples in different SPS conditions and with different amounts of ZrC, the post-sintering oxidation process was carried out in a box furnace at the temperature of 1400 °C. Increasing the time and temperature of the SPS process caused the decrease in the oxidation resistance of the samples. The reason for such observations was attributed to the extreme growth of grains with increasing the temperature and time of the sintering process despite the better densification of the samples. This research did not reach a clear result about the effect of SPS pressure on composites oxidation behavior. Increasing the amount of ZrC also did not have a positive effect on the oxidation resistance of the samples because this phase itself undergoes oxidation at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.