Background and Purpose: Rates of emergency medical services (EMS) utilization for acute stroke remain low nationwide, despite the time-sensitive nature of the disease. Prior research suggests several demographic and social factors are associated with EMS use. We sought to evaluate which demographic or socioeconomic factors are associated with EMS utilization in our region, thereby informing future education efforts. Methods: We performed a retrospective analysis of patients for whom the stroke code system was activated at 2 hospitals in our region. Univariate and logistic regression analysis was performed to identify factors associated with use of EMS versus private vehicle. Results: EMS use was lower in patients who were younger, had higher income, were married, more educated and in those who identified as Hispanic. Those arriving by EMS had significantly faster arrival to code, arrival to imaging, and arrival to thrombolytic treatment times. Conclusion: Analysis of regional data can identify specific populations underutilizing EMS services for acute stroke symptoms. Factors effecting EMS utilization varies by region and this information may be useful for targeted education programs promoting EMS use for acute stroke symptoms. EMS use results in more rapid evaluation and treatment of stroke patients.
Background Asthma exacerbations in children often require medications, urgent care, and hospitalization. Multiple environmental triggers have been associated with asthma exacerbations, including particulate matter 2.5 (PM2.5) and ozone, which are primarily generated by motor vehicle exhaust. There is mixed evidence as to whether proximity to highways increases risk of asthma exacerbations. Methods To evaluate the impact of highway proximity, we assessed the association between asthma exacerbations and the distance of child’s primary residence to two types of roadways in Durham County, North Carolina, accounting for other patient-level factors. We abstracted data from the Duke University Health System electronic health record (EHR), identifying 6208 children with asthma between 2014 and 2019. We geocoded each child’s distance to roadways (both 35 MPH+ and 55 MPH+). We classified asthma exacerbation severity into four tiers and fitted a recurrent event survival model to account for multiple exacerbations. Results There was a no observed effect of residential distance from 55+ MPH highway (Hazard Ratio: 0.98 (95% confidence interval: 0.94, 1.01)) and distance to 35+ MPH roadway (Hazard Ratio: 0.98 (95% confidence interval: 0.83, 1.15)) and any asthma exacerbation. Even those children living closest to highways (less 0.25 miles) had no increased risk of exacerbation. These results were consistent across different demographic strata. Conclusions While the results were non-significant, the characteristics of the study sample – namely farther distance to roadways and generally good ambient environmental pollution may contribute to the lack of effect. Compared to previous studies, which often relied on self-reported measures, we were able to obtain a more objective assessment of outcomes. Overall, this work highlights the opportunity to use EHR data to study environmental impacts on disease.
Background: Asthma exacerbations in children often require medications, urgent care, and hospitalization. Multiple environmental triggers have been associated with asthma exacerbations, including particulate matter 2.5 (PM2.5) and carbon monoxide (CO), which are primarily generated by motor vehicle exhaust. There is mixed evidence as to whether proximity to highways increases risk of asthma exacerbations. Methods: To test this hypothesis, we assessed the association between asthma exacerbations and the distance to two types of roadways in Durham County, accounting for other patient-level factors. We abstracted data from the Duke University Health System electronic health record (EHR), identifying 6,208 children with asthma between 2014 – 2019. We geocoded each child’s distance to roadways (both 35 MPH+ and 55 MPH+). We classified asthma exacerbation severity into four tiers and fitted a recurrent event survival model to account for multiple exacerbations. Results: There was a consistent weak effect of residential distance from 55+ MPH highway and any asthma exacerbation (Hazard Ratio: 0.98 (95% confidence interval: 0.94, 1.01)), but there was no effect from distance to 35+ MPH roadway (Hazard Ratio: 0.98 (95% confidence interval: 0.83, 1.15)). Conclusions: While the results were negative, characteristics of a study sample – namely farther distance to roadways and generally good ambient environmental pollution may contribute to this. Compared to previous work which often relied on self-report measures, we are able to obtain a more objective assessment of outcomes. Overall, this work highlights the opportunity to use EHR data to study environmental impacts of disease.
Background: Asthma exacerbations in children often require medications, urgent care, and hospitalization. Multiple environmental triggers have been associated with asthma exacerbations, including particulate matter 2.5 (PM2.5) and ozone, which are primarily generated by motor vehicle exhaust. There is mixed evidence as to whether proximity to highways increases risk of asthma exacerbations. Methods: To evaluate the impact of highway proximity, we assessed the association between asthma exacerbations and the distance of child’s primary residence to two types of roadways in Durham County, North Carolina, accounting for other patient-level factors. We abstracted data from the Duke University Health System electronic health record (EHR), identifying 6,208 children with asthma between 2014 – 2019. We geocoded each child’s distance to roadways (both 35 MPH+ and 55 MPH+). We classified asthma exacerbation severity into four tiers and fitted a recurrent event survival model to account for multiple exacerbations. Results: There was a no observed effect of residential distance from 55+ MPH highway (Hazard Ratio: 0.98 (95% confidence interval: 0.94, 1.01)) and distance to 35+ MPH roadway (Hazard Ratio: 0.98 (95% confidence interval: 0.83, 1.15)) and any asthma exacerbation. Even those children living closest to highways (less 0.25 miles) had no increased risk of exacerbation. These results were consistent across different demographic strata. Conclusions: While the results were non-significant, the characteristics of the study sample – namely farther distance to roadways and generally good ambient environmental pollution may contribute to the lack of effect. Compared to previous studies, which often relied on self-reported measures, we were able to obtain a more objective assessment of outcomes. Overall, this work highlights the opportunity to use EHR data to study environmental impacts on disease.
Background: Asthma exacerbations in children often require medications, urgent care, and hospitalization. Multiple environmental triggers have been associated with asthma exacerbations, including particulate matter 2.5 (PM2.5) and ozone, which are primarily generated by motor vehicle exhaust. There is mixed evidence as to whether proximity to highways increases risk of asthma exacerbations. Methods: To evaluate the impact of highway proximity, we assessed the association between asthma exacerbations and the distance of child’s primary residence to two types of roadways in Durham County, North Carolina, accounting for other patient-level factors. We abstracted data from the Duke University Health System electronic health record (EHR), identifying 6,208 children with asthma between 2014 – 2019. We geocoded each child’s distance to roadways (both 35 MPH+ and 55 MPH+). We classified asthma exacerbation severity into four tiers and fitted a recurrent event survival model to account for multiple exacerbations. Results: There was a no observed effect of residential distance from 55+ MPH highway (Hazard Ratio: 0.98 (95% confidence interval: 0.94, 1.01)) and distance to 35+ MPH roadway (Hazard Ratio: 0.98 (95% confidence interval: 0.83, 1.15)) and any asthma exacerbation. Conclusions: While the results were non-significant, the characteristics of the study sample – namely farther distance to roadways and generally good ambient environmental pollution may contribute to the lack of effect. Compared to previous studies, which often relied on self-reported measures, we were able to obtain a more objective assessment of outcomes. Overall, this work highlights the opportunity to use EHR data to study environmental impacts on disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.