SUMMARY
This paper presents a bi-level adaptive computed-current impedance controller for electrically driven robots. This study aims to reduce calculation complexities by utilizing the electrical equations of actuators, instead of the entire model of the electromechanical system. Moreover, taking the dynamical effects of mechanical parts into account through the current’s feedback, external disturbances are compensated. In order to handle uncertainties, a bi-level optimization problem is formulated to obtain guaranteed stability besides the estimation convergence. An adaptation rule and its optimal tuning gain are achieved. The proposed method is applied to control of a rehabilitation robot to evaluate its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.