Finding a small subset of data whose linear combination spans other data points, also called column subset selection problem (CSSP), is an important open problem in computer science with many applications in computer vision and deep learning. There are some studies that solve CSSP in a polynomial time complexity w.r.t. the size of the original dataset. A simple and efficient selection algorithm with a linear complexity order, referred to as spectrum pursuit (SP), is proposed that pursuits spectral components of the dataset using available sample points. The proposed non-greedy algorithm aims to iteratively find K data samples whose span is close to that of the first K spectral components of entire data. SP has no parameter to be fine tuned and this desirable property makes it problem-independent. The simplicity of SP enables us to extend the underlying linear model to more complex models such as nonlinear manifolds and graph-based models. The nonlinear extension of SP is introduced as kernel-SP (KSP). The superiority of the proposed algorithms is demonstrated in a wide range of applications.
A new framework for a secure and robust consensus in blockchain-based IoT networks is proposed using machine learning. Hyperledger fabric, which is a blockchain platform developed as part of the Hyperledger project, though looks very apt for IoT applications, has comparatively low tolerance for malicious activities in an untrustworthy environment. To that end, we propose AI-enabled blockchain (AIBC) with a 2step consensus protocol that uses an outlier detection algorithm for consensus in an IoT network implemented on hyperledger fabric platform. The outlier-aware consensus protocol exploits a supervised machine learning algorithm which detects anomaly activities via a learned detector in the first step. Then, the data goes through the inherent Practical Byzantine Fault Tolerance (PBFT) consensus protocol in the hyperledger fabric for ledger update. We measure and report the performance of our framework with respect to the various delay components. Results reveal that our implemented AIBC network (2-step consensus protocol) improves hyperledger fabric performance in terms of fault tolerance by marginally compromising the delay performance.
Dictionary learning (DL) for sparse representation has been widely investigated during the last decade. A DL algorithm uses a training data set to learn a set of basis functions over which all training signals can be sparsely represented. In practice, training signals may contain a few outlier data, whose structures differ from those of the clean training set. The presence of these unpleasant data may heavily affect the learning performance of a DL algorithm. In this paper we propose a robust-to-outlier formulation of the DL problem. We then present an algorithm for solving the resulting problem. Experimental results on both synthetic data and image denoising demonstrate the promising robustness of our proposed problem.
Abstract-In this paper, the problem of target localization in the presence of outlying sensors is tackled. This problem is important in practice because in many real-world applications the sensors might report irrelevant data unintentionally or maliciously. The problem is formulated by applying robust statistics techniques on squared range measurements and two different approaches to solve the problem are proposed. The first approach is computationally efficient; however, only the objective convergence is guaranteed theoretically. On the other hand, the whole-sequence convergence of the second approach is established. To enjoy the benefit of both approaches, they are integrated to develop a hybrid algorithm that offers computational efficiency and theoretical guarantees.The algorithms are evaluated for different simulated and real-world scenarios. The numerical results show that the proposed methods meet the Cràmer-Rao lower bound (CRLB) for a sufficiently large number of measurements. When the number of the measurements is small, the proposed position estimator does not achieve CRLB though it still outperforms several existing localization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.