In this work we extend the well-known spectral cover construction first developed by Friedman, Morgan, and Witten to describe more general vector bundles on elliptically fibered Calabi-Yau geometries. In particular, we consider the case in which the Calabi-Yau fibration is not in Weierstrass form, but can rather contain fibral divisors or multiple sections (i.e. a higher rank Mordell-Weil group). In these cases, general vector bundles defined over such Calabi-Yau manifolds cannot be described by ordinary spectral data. To accomplish this we employ well established tools from the mathematics literature of Fourier-Mukai functors. We also generalize existing tools for explicitly computing Fourier-Mukai transforms of stable bundles on elliptic Calabi-Yau manifolds. As an example of these new tools we produce novel examples of chirality changing small instanton transitions. The goal of this work is to provide a geometric formalism that can substantially increase the understood regimes of heterotic/F-theory duality.
We consider heterotic target space dual (0,2) GLSMs on elliptically fibered Calabi-Yau manifolds. In this context, each half of the "dual" heterotic theories must in turn have an F-theory dual. Moreover, the apparent relationship between two heterotic compactifications seen in (0,2) heterotic target space dual pairs should, in principle, induce some putative correspondence between the dual F-theory geometries. It has previously been conjectured in the literature that (0,2) target space duality might manifest in F-theory as multiple K3-fibrations of the same elliptically fibered Calabi-Yau manifold. In this work we investigate this conjecture in the context of both 6-dimensional and 4-dimensional effective theories and demonstrate that in general, (0,2) target space duality cannot be explained by such a simple phenomenon alone. In all cases, we provide evidence that nongeometric data in F-theory must play at least some role in the induced F-theory correspondence, while leaving the full determination of the putative new F-theory duality to future work.
In this work we provide a self-contained and modern introduction to some of the tools, obstacles and open questions arising in string compactifications. Techniques and current progress are illustrated in the context of smooth heterotic string compactifications to 4-dimensions. Progress is described on bounding and enumerating possible string backgrounds and their properties. We provide an overview of constructions, partial classifications, and moduli problems associated to Calabi-Yau manifolds and holomorphic bundles over them.
Holomorphicity of vector bundles can stabilize complex structure moduli of a Calabi-Yau threefold in N = 1 supersymmetric heterotic compactifications. In principle, the Atiyah class determines the stabilized moduli. In this paper, we study how this mechanism works in the context of elliptically fibered Calabi-Yau manifolds where the complex structure moduli space contains two kinds of moduli, those from the base and those from the fibration. Defining the bundle with spectral data, we find three types of situations when bundles’ holomorphicity depends on algebraic cycles exist only for special loci in the complex structure moduli, which allows us to stabilize both of these two moduli. We present concrete examples for each type and develop practical tools to analyze the stabilized moduli. Finally, by checking the holomorphicity of the four-flux and/or local Higgs bundle data in F-theory, we briefly study the dual complex structure moduli stabilization scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.