One of the primary verification criteria of the autonomous vehicle is safe interaction with other road users. Based on studies, real-road testing is not practical for safety validation due to its time and cost consuming. Therefore, simulating miles driven is the only feasible way to overcome this limitation. The primary goal of the related research project is to develop advanced techniques in the human-robot interaction (HRI) safety validation area by usage of immersive simulation technologies. Developing methods for the creation of the simulation environment will enable us to do experiments in a digital environment rather than real. The main aim of the paper is to develop an effective method of creating a virtual environment for performing simulations on industrial robots, mobile robots, and autonomous vehicles (AGV-s) from the safety perspective for humans. A mid-size drone was used for aerial imagery as the first step in creating a virtual environment. Then all the photos were processed in several steps to build the final 3D map. Next, this mapping method was used to create a high detail simulation environment for testing an autonomous shuttle. Developing efficient methods for mapping real environments and simulating their variables is crucial for the testing and development of control algorithms of autonomous vehicles.
Aquatic environments and water resources face a variety of risks from numerous sources of pollution. In this paper, we propose a preliminary mechanism for realizing robotic technology practically and cost-effectively for monitoring these pollutions. The presented system is a small robotic fish propelled by a beam of ionic polymer-metal composite (IPMC) artificial muscle that imitates the motion of a small Scorpis Georgiana fish. One of the superiorities of the proposed model is the IPMC actuation mechanism powered by a battery that is charged wirelessly from a solar panel source. This approach enables us to produce a robotic fish that works ceaselessly without being forced to carry the solar panel load. Moreover, we present a method to control the flapping motion of a robotic fish by taking advantage of a tiny Wi-Fi module that yields more working range, bulky data sending, low power consumption, simple programing, and convenient communication for creating a network with other similar robots. All these beneficial characteristics make the proposed structure a promising candidate for detecting pollution on the surface of aquatic environments and sending/recording necessary data in collaboration with desirable sensors. Theoretical considerations support experimental results reported in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.