In this article, the influence of separate additions of bismuth, antimony, and strontium on microstructure, thermal, and machinability of Al-11%Si-2%Cu alloy (ADC12) has been reported. Additives depressed the aluminum-silicon eutectic growth temperature (T G ) and altered the silicon morphology. Different silicon morphologies, namely flake, lamellar, and fibrous influenced the main cutting force, feed force, and surface roughness during turning. Workpieces with fibrous silicon morphology produced the highest cutting force, feed force, and surface roughness while that of bismuth-containing workpieces produced the lowest cutting force, feed force, and the best surface roughness due to the formation of bismuth compound which acts as lubricant during turning. The results showed that the highest T G is related to the best surface roughness and as such the best machinable alloy investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.