The recently ermerging disease COVID-19 is caused by the new SARS-CoV-2 virus first detected in the city of Wuhan, China. From there it has been rapidly spreading inside and outside China. With initial death rates around 4%, COVID-19 patients at longer distances from Wuhan showed reduced mortality as was previously observed for the SARS coronavirus. However, the new coronavirus spreads more strongly, as it sheds long before onset of symptoms or may be transmitted by people without symptoms. Rapid development of a protective vaccine against COVID-19 is therefore of paramount importance. Here we demonstrate that recombinantly expressed receptor binding domain (RBD) of the spike protein homologous to SARS binds to ACE2, the viral receptor. Higly repetitive display of RBD on immunologically optimized virus-like particles derived from cucumber mosaic virus resulted in a vaccine candidate (RBD-CuMVTT) that induced high levels of specific antibodies in mice which were able to block binding of spike protein to ACE2 and potently neutralized the SARS-CoV-2 virus in vitro.
Background: Several new variants of SARS-CoV-2 have emerged since fall 2020 which have multiple mutations in the receptor binding domain (RBD) of the spike protein. Objective: We aimed to assess how mutations in the SARS-CoV-2 RBD affect receptor affinity to angiotensin-converting enzyme 2 (ACE2) and neutralization by anti-RBD serum antibodies. Methods: We produced a SARS-CoV-2 RBD mutant (RBDmut) with key mutations (E484K, K417N, N501Y) from the newly emerged Brazilian variant. Using Biolayer Interferometry, we analyzed the binding of this mutant to ACE2, and the susceptibility to neutralization by sera from vaccinated mice and COVID-19 convalescent patients. Results: Kinetic profiles showed increased RBDmut - ACE2 affinity compared to RBDwt, and binding of vaccine-elicited or convalescent sera was significantly reduced. Likewise, both sera types showed significantly reduced ability to block RBDmut - ACE2 binding indicating that antibodies induced by RBDwt have reduced capability to neutralize mutant virus. Conclusion: Our physiochemical data show enhanced infectivity and reduced neutralization by polyclonal antibodies of the Brazilian variant of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.