<p style='text-indent:20px;'>One of the best methods for constructing maximum distance separable (<inline-formula><tex-math id="M1">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula>) matrices is based on making use of Cauchy matrices. In this paper, by using some extensions of Cauchy matrices, we introduce several new forms of <inline-formula><tex-math id="M2">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula> matrices over finite fields of characteristic 2. A known extension of a Cauchy matrix, called the Cauchy-like matrix, with application in coding theory was introduced in 1985. One of the main contributions of this paper is to apply Cauchy-like matrices to introduce <b><inline-formula><tex-math id="M3">\begin{document}$ 2n \times 2n $\end{document}</tex-math></inline-formula> involutory <inline-formula><tex-math id="M4">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula> matrices</b> in the semi-Hadamard form which is a generalization of the previously known methods. We make use of Cauchy-like matrices to construct <b>multiple <inline-formula><tex-math id="M5">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula> matrices</b> which can be used in the Feistel structures. We also introduce a new extension of Cauchy matrices to be referred to as <i>Cauchy-light matrices</i>. The introduced Cauchy-light matrices are applied to construct <inline-formula><tex-math id="M6">\begin{document}$ n \times n $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M7">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula> matrices having at least <inline-formula><tex-math id="M8">\begin{document}$ 3n-3 $\end{document}</tex-math></inline-formula> entries equal to the unit element <inline-formula><tex-math id="M9">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>; such a matrix is called a <b>lightweight <inline-formula><tex-math id="M10">\begin{document}$ \operatorname{MDS} $\end{document}</tex-math></inline-formula> matrix</b> and can be used in the lightweight cryptography. A simple closed-form expression is given for the determinant of Cauchy-light matrices.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.