Abstract.A lot of work has been done to give the individual words of a certain language adequate representations in vector space so that these representations capture semantic and syntactic properties of the language. In this paper, we compare different techniques to build vectorized space representations for Arabic, and test these models via intrinsic and extrinsic evaluations. Intrinsic evaluation assesses the quality of models using benchmark semantic and syntactic dataset, while extrinsic evaluation assesses the quality of models by their impact on two Natural Language Processing applications: Information retrieval and Short Answer Grading. Finally, we map the Arabic vector space to the English counterpart using Cosine error regression neural network and show that it outperforms standard mean square error regression neural networks in this task.
Social media postings are increasingly being used in modern days disaster management. Along with the textual information, the contexts and cues inherent in the images posted on social media play an important role in identifying appropriate emergency responses to a particular disaster. In this paper, we proposed a disaster taxonomy of emergency response and used the same taxonomy with an emergency response pipeline together with deep-learning-based image classification and object identification algorithms to automate the emergency response decision-making process. We used the card sorting method to validate the completeness and correctness of the disaster taxonomy. We also used VGG-16 and You Only Look Once (YOLO) algorithms to analyze disaster-related images and identify disaster types and relevant cues (such as objects that appeared in those images). Furthermore, using decision tables and applied analytic hierarchy processes (AHP), we aligned the intermediate outputs to map a disaster-related image into the disaster taxonomy and determine an appropriate type of emergency response for a given disaster. The proposed approach has been validated using Earthquake, Hurricane, and Typhoon as use cases. The results show that 96% of images were categorized correctly on disaster taxonomy using YOLOv4. The accuracy can be further improved using an incremental training approach. Due to the use of cloud-based deep learning algorithms in image analysis, our approach can potentially be useful to real-time crisis management. The algorithms along with the proposed emergency response pipeline can be further enhanced with other spatiotemporal features extracted from multimedia information posted on social media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.