Abstract-In diffusion-based molecular communications, messages can be conveyed via the variation in the concentration of molecules in the medium. In this paper, we intend to analyze the achievable capacity in transmission of information from one node to another in a diffusion channel. We observe that because of the molecular diffusion in the medium, the channel possesses memory. We then model the memory of the channel by a two-step Markov chain and obtain the equations describing the capacity of the diffusion channel. By performing a numerical analysis, we obtain the maximum achievable rate for different levels of the transmitter power, i.e., the molecule production rate.
A diffusion-based molecular communication system has two major components: the diffusion in the medium, and the ligand-reception. Information bits, encoded in the time variations of the concentration of molecules, are conveyed to the receiver front through the molecular diffusion in the medium. The receiver, in turn, measures the concentration of the molecules in its vicinity in order to retrieve the information. This is done via ligand-reception process. In this paper, we develop models to study the constraints imposed by the concentration sensing at the receiver side and derive the maximum rate by which a ligand-receiver can receive information. Therefore, the overall capacity of the diffusion channel with the ligand receptors can be obtained by combining the results presented in this paper with our previous work on the achievable information rate of molecular communication over the diffusion channel.
The design of biologically-inspired wireless communication systems using bacteria as the basic element of the system is initially motivated by a phenomenon called Quorum Sensing. Due to high randomness in the individual behavior of a bacterium, reliable communication between two bacteria is almost impossible. Therefore, we have recently proposed that a population of bacteria in a cluster is considered as a bio node in the network capable of molecular transmission and reception. This proposition enables us to form a reliable bio node out of many unreliable bacteria. In this paper, we study the communication between two nodes in such a network where information is encoded in the concentration of molecules by the transmitter. The molecules produced by the bacteria in the transmitter node propagate through the diffusion channel. Then, the concentration of molecules is sensed by the bacteria population in the receiver node which would decode the information and output light or fluorescent as a result. The uncertainty in the communication is caused by all three components of communication, i.e., transmission, propagation and reception. We study the theoretical limits of the information transfer rate in the presence of such uncertainties. Finally, we consider Mary signaling schemes and study their achievable rates and corresponding error probabilities.
We consider the problem of distributing a file in a network of storage nodes whose storage budget is limited but at least equals the size file. We first generate T encoded symbols (from the file) which are then distributed among the nodes. We investigate the optimal allocation of T encoded packets to the storage nodes such that the probability of reconstructing the file by using any r out of n nodes is maximized. Since the optimal allocation of encoded packets is difficult to find in general, we find another objective function which well approximates the original problem and yet is easier to optimize. We find the optimal symmetric allocation for all coding redundancy constraints using the equivalent approximate problem. We also investigate the optimal allocation in random graphs. Finally, we provide simulations to verify the theoretical results.
Many applications require data processing to be performed on individual pieces of data which are of finite sizes, e.g., files in cloud storage units and packets in data networks. However, traditional universal compression solutions would not perform well over the finite-length sequences. Recently, we proposed a framework called memory-assisted universal compression that holds a significant promise for reducing the amount of redundant data from the finite-length sequences. The proposed compression scheme is based on the observation that it is possible to learn source statistics (by memorizing previous sequences from the source) at some intermediate entities and then leverage the memorized context to reduce redundancy of the universal compression of finite-length sequences. We first present the fundamental gain of the proposed memory-assisted universal source coding over conventional universal compression (without memorization) for a single parametric source. Then, we extend and investigate the benefits of the memory-assisted universal source coding when the data sequences are generated by a compound source which is a mixture of parametric sources. We further develop a clustering technique within the memoryassisted compression framework to better utilize the memory by classifying the observed data sequences from a mixture of parametric sources. Finally, we demonstrate through computer simulations that the proposed joint memorization and clustering technique can achieve up to 6-fold improvement over the traditional universal compression technique when a mixture of non-binary Markov sources is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.